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Chapter 1

Introduction

1.1 Overview

This thesis presents a subset of my research work in the field of real-time rendering.
The current chapter serves as an introduction to and survey of this field, providing
the context for the papers presented in the following chapters (Section 1.2). Then
the papers making up the body of the thesis are listed (Section 1.3) and briefly
described (Section 1.4), with an emphasis on the contribution the author made to
each individual work.

1.2 Introduction to Real-Time Rendering

Computer graphics is an ever evolving field. Years ago, researchers concentrated
on rendering appealing still images. Ray tracing and radiosity were developed to
create images which mimick real photographs, giving rise to “photorealistic ren-
dering”. Applications of photorealistic rendering are manifold, including lighting
simulation of planned buildings, creating artwork, and not the least of them is ren-
dering special effects (e.g., explosions, atmospheric effects and many more) and
whole image sequences in the movie industry.

However, the rapid increase in computational power made it possible to look
towards interactive image generation, which was important for many application
areas. This led to a new research direction, which, in its most general definition,
concerns itself with techniques for the interactive generation of computer graphics
images: “real-time rendering”. Flight simulation, driving simulation, architectural
walkthroughs, interactive modeling packages, virtual reality and computer games
are among the applications that rely on or were made possible in the first place by
the advances made in real-time rendering.

Real-time rendering is a term that is nowadays commonly connected with com-
modity hardware available to every consumer. It should be noted, however, that not
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Chapter 1 Introduction

too long ago, 3D graphics on a consumer PC was plainly impossible. It was the
introduction of the 3DFX Voodoo graphics card in 1997 [Leht00] which started
an enormous development frenzy, so that nowadays, 3D consumer graphics cards
from NVIDIA and AMD (formerly ATI) surpass the capabilities of most dedicated
graphics workstations. In many ways, during these 10 years we have witnessed
the coming of age of the discipline of computer graphics. Interestingly enough,
it was the entertainment industry, foremost of all computer games, that made this
development possible, by opening the consumer market to this new technology.

There are two possible directions for real-time rendering research, to both of
which this thesis makes contributions:

• improving the performance of rendering algorithms, so that more complex
scenes can be displayed, and

• improving the quality of the images that are displayed.

1.2.1 What is Real Time?

A topic that encompasses both of the above mentioned research directions is the
question what computer graphics researcher understand by the term “real time.” In
the context of real-time computing, a system is said to be real-time if the correct-
ness of an operation depends not only upon the logical correctness of the operation
but also upon the time at which it is performed. In a hard or immediate real-time
system, the completion of an operation after its deadline is considered useless—
ultimately, this may lead to a critical failure of the complete system. A soft real-
time system on the other hand will tolerate such lateness, and may respond with
decreased service quality (e.g., dropping frames).

Obviously, a computer graphics application can hardly fulfill the requirements
of a hard real-time system, as it depends on many factors outside of the program-
mer’s control (for example non-real-time operating system and drivers). Instead,
we have to be satisfied with a soft real-time system in which glitches in response
time can occur.

A definition that is more adapted to the goals of computer graphics is that real-
time rendering is concerned with the display of computer-generated images at rates
which let a human observer believe that she is looking at a smooth animation. The
most important factor in this respect is therefore the frame rate, i.e., the number
of displayed images per second. The frame rate is tightly coupled to the update
rate of the display device. TV screens run at either 50 Hz (PAL) or 60 Hz (NTSC),
and although the human eye can perceive flicker at this frequency and will weary
from prolonged watching, many applications are targeted towards systems using
TV screens (e.g., arcade and console games). Computer CRTs usually run at a
comfortable 85 Hz, which is well above the flicker limit of the human eye. While
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on the one hand, these frequencies set an upper limit on the frame rates a real-time
rendering system has to achieve, and on the other hand, it is generally agreed that
little more than 20 frames per second (fps) are sufficient to generate the illusion
of motion (24 fps is used in motion theaters, for example), it has been discovered
that frame rates below the display update rate lead to significant artifacts. If the
rendering system cannot provide a new image for every display refresh, the same
image will be displayed several times before being changed. This results in unnat-
ural choppy motion and confuses the human visual system into seeing distracting
“ghost images”, especially noticeable at sharp edges in the image (like, for exam-
ple, a building border) [Helm94]. These artifacts are perceivable mainly in display
technologies which are inherently capable of such high refresh rates. Alternative
display systems, mainly LCDs, have significantly lower refresh rates than CRTs.
Moreover, the persistence of images on an LCD is much larger than on a CRT, so
that smearing and blurring artifacts occur in continuous motion. For this reason,
traditional LCD screens are not really suitable for real-time applications. However,
since LCDs are quickly becoming the prevalent TV technology, manufacturers in-
vest enormous resources into improving these aspects of the LCD technology, and
solutions like 120 Hz LCDs and displays with pulsed backlights are already in
prototype stage.

Apart from the value of the frame rate itself, the consistency of the frame rate
plays an equally important role in providing a high-quality real-time rendering sys-
tem, as frame-rate drops are easily perceivable as stutters and jerks, which are often
more annoying to the user than a generally lower overall frame rate. For this rea-
son, significant research has been conducted into the area of providing real-time
rendering systems with bounded frame rates [Funk93], which typically make use
of level-of-detail techniques (see next section). Chapter 2 extends this research by
handling the crucial question of how to predict the frame rate of a given scene,
which is an important prerequisite to being able to control the scene complexity in
a way to reach a desired frame rate.

Finally, it should be noted that the growth in scene complexities desired by the
users is so quick that for any state-of-the art real-time system a scene can be found
that overwhelms the capabilities of the system. Thus, real-time rendering will stay
an important research topic in the foreseeable future.

1.2.2 Improving Performance

The improvement of rendering performance is maybe the core area of real-time
rendering from its beginning. Faster rendering allows for more complex scenes
and more detailed objects, which also leads to improved quality.

Visibility culling. Starting from the description of a complex 3D model which
cannot be rendered at interactive frame rates on a current rendering system, the
first obvious step is to reduce the amount of data that has to be processed. For-
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Chapter 1 Introduction

tunately, in most applications of real-time rendering, the observer can only see
a small subset of the whole scene at any given time. Most of the scene is usu-
ally hidden by occluding geometry like building walls or terrain. Therefore, sig-
nificant processing power can be saved by identifying those parts of the scene
which do not contribute to the final image and remove them from the rendering
process. This is called visibility culling. It is important that the effort invested
into visibility culling does not surpass the gains by not rendering invisible geome-
try. Therefore, a promising strategy is to precompute information about visibility
and only do constant-time lookups at runtime (presented in Chapter 5). Alter-
natively, we show a method to exploit a graphics hardware feature to practically
eliminate the visibility culling costs, making the algorithm feasible for runtime
computation (presented in Chapter 4). Visibility culling has been one of the main
research foci in the career of the author, and besides the two contributions pre-
sented in this thesis, he has helped advance the field through many other publica-
tions [Wonk00, Wonk01, Bitt01, Bitt04, Bitt05, Matt06, Matt07].

Levels of detail. In many applications, the amount of geometry that remains
after visibility culling and is therefore actually visible to the observer still over-
whelms the capabilities of current rendering systems. Fortunately, the complex-
ity of the scene can be reduced: due to the perspective foreshortening effect in
perspective cameras, many objects project to a small area on screen, and there-
fore do not need to be displayed using their full geometric description (which is
often designed to allow even close-up views). This leads to the idea of level-of-
detail (LOD) rendering, in which objects have several geometric representations
at different levels of detail. While the author has worked on level-of-detail meth-
ods [Wimm98, Gieg07c], this thesis will not cover this specific area of real-time
rendering.

Image-based rendering. Geometric LODs are very good at reducing the de-
tail in highly detailed geometric objects, e.g., objects acquired using laser scan-
ners or modeled using freeform surfaces. However, there are scenes consisting of
many smaller, disconnected objects, or objects that defy geometric simplification
due to their topological complexity. For these cases it has been suggested to use
image-based rendering techniques, which work by creating sampling-based repre-
sentations of the objects to be simplified. The complexity of these sampling-based
representations is independent of the original object, and only depends on the de-
sired output resolution. Image-based rendering is therefore well suited to achieve
a desired frame rate independent of the complexity of the objects. A commonly
used technique is to replace a geometric object by a quadrilateral polygon, a so-
called impostor, that is mapped with an image (texture) of the object. Impostors
can be generated on the fly or precomputed, in which case storage cost quickly
becomes an issue. Alternatively, it is very popular to use image-based rendering
already at the modeling stage. For example, a highly detailed geometric object
is simplified using LOD techniques, and the simplified version is mapped with
a texture that encodes the response of the surface to lighting conditions, thereby
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allowing to simulate surface detail by shading effects. These techniques gain in
importance with respect to simple impostor methods, because the increasing use
of advanced shading effects in current applications makes it difficult to compute
faithful image-based representations that capture these effects at runtime. The field
of image-based rendering is vast, and although the author has contributed to this
field [Wimm99a, Wimm99b, Wimm01, Jesc02a, Jesc02b, Jesc05, Jesc07], but the
area is not topic of this thesis.

1.2.3 Improving Quality

Originally, interactive rendering systems were limited to very simple appearance
models that were hard-coded into the available graphics accelerators. The Phong
illumination model [Phon75] allowed the modeling of diffuse and specular reflec-
tions, giving most computer-generated images a characteristic look of shiny plastic.
This was mostly combined with a single texture map to capture fine surface struc-
tures. Furthermore, illumination was completely local, i.e., the shading (computed
color) at a point depends only on the surface properties of the point itself and on a
fixed number of light sources.

A recent paradigm shift in graphics hardware has laid the groundwork for fun-
damental changes in the quality of real-time rendering. Instead of hard-wiring
shading models in the so-called fixed function pipeline, graphics hardware has
gradually (partially in 2001, more so in 2003) started to offer full programmability
for all its functional units.

This immediately opens the door for more realistic local illumination models,
allowing the rendering of skin, fur, metallic surfaces etc., replacing the original
Phong model. The author has contributed in the development of a new model for
the illumination of plant leaves, allowing for realistic shading due to the direct
illumination from the sun [Habe07] (not in this thesis).

Furthermore, especially the capability to perform arbitrary calculations for
each pixel on screen, led to the development of full-screen postprocessing algo-
rithms. Most well-known are so-called high dynamic range (HDR) rendering ef-
fects, in which the full dynamic range (many orders of magnitude) of natural illu-
mination is taken into account in the computation of illumination Only in a final
step, called tone mapping, this range is mapped to the output range of the display
device, taking into account eye accommodation. The author has contributed to
tone-mapping research [Artu03, Čadí06], but it is beyond the scope of this thesis.
Another interesting HDR effect nowadays typically found in computer games is
glare (pixels of very high light intensity “bleed” into neighboring pixels).

Another development that is more related to the general performance increase
of graphics hardware than to programmability is that non-local effects are increas-
ingly taken into account in real-time rendering. Reflections and refractions are just
two examples where additional renderings of the scene, combined with reasonable
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assumptions (usually that the object is small with respect to the distance to the
reflected/refracted part of the scene) can be used to simulate a global effect.

Shadows. By far the most studied global effect in real-time rendering is the
appearance of shadows, which occur whenever there is an object in the light path
between a point to be illuminated and a light source. We distinguish between hard
shadows, which are due to an ideal point (or directional) light source, and soft
shadows, which are due to real area (or volumetric) light sources. Hard shadows
show a discontinuous shadow boundary, because the decision whether a point is
in shadow or not is boolean. Soft shadows, on the other hand, show a gradual
transition from the umbra region (fully shadowed) to the fully illuminated region.
The area of this transition is called penumbra, and includes all points from which
the light source can only be seen partially. Soft shadows are significantly more
complex to compute than hard shadows, and interactive soft shadow algorithms
have only been presented very recently [Guen06].

Hard shadows, on the other hand, are relatively well explored, although they
still present important challenges to be solved. There are two main algorithms to
compute hard shadows in dynamic scenes: shadow volumes [Crow77] and shadow
maps [Will78]. Shadow volumes are calculated in object space and therefore pro-
duce pixel-exact shadow boundaries. However, they place relatively high demands
on both the main processor and on the graphics card, and are also more diffi-
cult to implement. In contrast, shadow maps are very simple to implement and
often have negligible overhead in rendering time, since the cost is only one ad-
ditional rendering pass without shading. However, shadow maps operate in im-
age space and are therefore prone to aliasing artifacts, evident as staircase ef-
fects at the shadow boundaries. The recent years have seen an influx in ap-
proaches to reduce these artifacts, among them the algorithm presented in Chap-
ter 3 in this thesis, and other approaches also proposed by the author and cowork-
ers [Wimm06b, Gieg06, Gieg07a, Gieg07b, Sche07].

Towards global illumination in real time. There is increasing interest in car-
rying out a full global illumination simulation in real time. The main character-
istic of global illumination is that each surface point that is illuminated by a light
source in turn becomes a light source itself and contributes to the illumination of
the scene. Obviously this leads to an unmanageable amount of light interactions.
While diffuse illumination can be precomputed using arbitrarily complex algo-
rithms for static scenes, e.g., using Radiosity [Sill94], dynamic scenes and non-
diffuse illumination require more sophisticated solutions. A popular technique is
to precompute the radiance transfer of an object [Sloa02], which allows interac-
tive changes to the lighting environment, while all direct and indirect illumination
effects within the object are taken into account. This thesis does not deal with
real-time global illumination, and will therefore not explore this topic further.
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1.2.4 Point-Based Rendering

The idea of point-based rendering is that highly complex objects can be better rep-
resented using points instead of polygons, since at that level of detail the exact
topology of the object surface becomes irrelevant [Pfis00, Rusi00]. These ideas
became popular before the wide-spread availability of actual point-sampled ge-
ometry, and therefore research concentrated on higher-quality rendering [Bots05]
based on the assumption that each point actually represents a small disk, with a
normal vector and a disk radius stored with it.

Meanwhile, 3D range scanners are starting to become affordable at least for
research labs. It turns out that especially for datasets acquired using long-range
scanners (i.e., with a range from 2 to several 100 meters), it is not obvious how
to generate a robust surface approximation from the dataset, since the density of
points varies greatly depending on the distance to the scan position, and natural
objects often have features that fall below the sampling density, making surface
reconstruction impossible. On the other hand, the sheer amount of data to be pro-
cessed presents an interesting new challenge for real-time rendering research. Be-
fore thinking about rendering a point cloud that takes 4 Gigabyte on disk using
an accurate surface approximation, it is important to solve the problem of how to
display the model at all. Chapter 6 introduces a hierarchical data structure that is
amenable to out-of-core rendering of such huge point clouds. Such an algorithm is
important to provide quick scan visualizations, and to allow manipulation of points
and management of the dataset without having to rely on an accurate surface re-
construction.

It is to be expected that point-based rendering methods will gain more and more
importance, since there is a huge number of applications where real objects need to
be digitized and then visualized or even modified. Interactive modification of such
huge datasets is a research topic the author is currently investigating.

1.2.5 Conclusion

This section has provided a very abridged overview of the research area of real-
time rendering. Not all topics relevant in real-time rendering were touched, instead
the focus was put on those areas which are relevant to understand the papers in this
thesis in a wider context.

The papers in this thesis are related in the sense that they highlight different
important aspects of real-time rendering. Chapter 2 lays the groundwork by pro-
viding general methods to approach the ideal goal of real-time rendering. Chap-
ter 3 shows how to improve the quality of real-time rendering by providing better-
looking shadow rendering, one of the most popular research topics in real-time ren-
dering. Chapters 4 and 5, on the other hand, deal with increasing the performance
through two methods for visibility culling, one for runtime computation and one
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for preprocessing. Finally, Chapter 6 extends real-time rendering from traditional
polygon rendering to a new type of dataset that has recently gained importance,
namely point clouds. In that sense, it is also a method for improving performance,
but also highlights the additional system aspect of out-of-core rendering, which ap-
pears especially with the huge datasets that are common in point-based rendering.

1.3 List of Selected Papers

This thesis contains the following papers [Wimm03, Wimm04, Wimm05, Wonk06,
Wimm06a]:

1. Michael Wimmer and Peter Wonka:
Rendering Time Estimation for Real-Time Rendering
In Per Christensen and Daniel Cohen-Or, editors, Rendering Techniques
2003 (Proceedings Eurographics Symposium on Rendering), pages 118–
129. Eurographics, Eurographics Association, June 2003. ISBN 3-905673-
03-7.

2. Michael Wimmer, Daniel Scherzer, and Werner Purgathofer:
Light Space Perspective Shadow Maps
In Alexander Keller and Henrik W. Jensen, editors, Rendering Techniques
2004 (Proceedings Eurographics Symposium on Rendering), pages 143–
151. Eurographics, Eurographics Association, June 2004. ISBN 3-905673-
12-6.

3. Michael Wimmer and Jiří Bittner:
Hardware Occlusion Queries Made Useful
In Matt Pharr and Randima Fernando, editors, GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-Purpose Compu-
tation. Addison-Wesley, March 2005. ISBN 0-32133-559-7.

4. Peter Wonka, Michael Wimmer, Kaichi Zhou, Stefan Maierhofer, Gerd
Hesina, and Alexander Reshetov:
Guided Visibility Sampling
ACM Transactions on Graphics, 25(3):494–502, July 2006. Proceedings
ACM SIGGRAPH 2006, ISSN 0730-0301.

5. Michael Wimmer and Claus Scheiblauer:
Instant Points
In Proceedings Symposium on Point-Based Graphics 2006, pages 129–136.
Eurographics, Eurographics Association, July 2006. ISBN 3-90567-332-0.

The papers included in this thesis appear unmodified in their original, published
form, except for the typesetting, which has been adapted to conform to the style of
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this thesis. No modifications to the text have been done. The bibliography sections
have been joined into a single bibliography at the end of this thesis.

1.4 Overview of the Selected Papers and Contributions of
the Author

This section gives a short overview on each of the papers in this thesis. These
papers represent a sample of the research work the author carried out in the years
2001–2007. For this time, the author also lists more than 20 additional refereed
scientific articles, papers and book chapters in his publication list. Some of them
are listed with the appropriate chapters as related work, but a number of topics in
which the author was heavily involved, such as image-based rendering, level-of-
detail rendering, real-time rendering of natural phenomena, and urban modeling,
cannot be shown due to the required scope of such a thesis.

In general, computer graphics research is a collaborative effort, where coop-
erations with diploma- and PhD students and other PostDocs are necessary to
spread the effort usually required to implement complex real-time rendering sys-
tems. Therefore none of the papers in this thesis is a single-author paper by Michael
Wimmer alone—actually, such papers are the exception, not the rule, in the field of
computer graphics. However, as traditionally evidenced by the first-author position
on all but one of them, the author made a significant contribution to these papers,
typically by developing the initial idea, guiding the implementation, and writing
the article. The following sections contain more details about the contributions of
the author to each of these papers.

1.4.1 Chapter 2: Rendering Time Estimation for Real-Time Render-
ing

This chapter sets a baseline for the subsequent work in real-time rendering. It
deals with the all-important question what the term “real-time” actually means in
the context of computer graphics. As a result, it offers several methods to estimate
(i.e., predict) the rendering time of a set of graphics primitives, which is crucial
when designing rendering systems with bounded update rates. The paper also con-
tains suggestions for several extensions to graphics hardware to facilitate the design
of more predictable real-time graphics systems, most of which have meanwhile al-
ready been adopted in current graphics hardware or drivers.

The author has developed the original idea and refined it in discussions with
Peter Wonka. He has implemented the rendering system and produced results. He
has also written the complete text of the article, while most figures were provided
by Peter Wonka. The article was published at the EUROGRAPHICS Symposium
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on Rendering, which is, after ACM SIGGRAPH, the second most important pub-
lication venue for rendering research in computer graphics (including real-time
rendering).

1.4.2 Chapter 3: Light Space Perspective Shadow Maps

This chapter introduces a new mathematical technique to significantly improve the
apparent quality of shadows in real-time rendering. The algorithm exploits theoret-
ical findings about perspective transformations, and provides quality improvement
at no cost versus the reference algorithm.

The implementation for this work was carried out by diploma student Daniel
Scherzer under the direction and guidance of the author. Michael Wimmer initiated
and guided the project, created the theoretical framework and wrote the complete
paper. Daniel Scherzer provided the implementation and results. This paper has
also been published at the EUROGRAPHICS Symposium on Rendering.

1.4.3 Chapter 4: Hardware Occlusion Queries Made Useful

This chapter deals with one of the most prominent topics in real-time rendering,
visibility culling. The presented technique exploits a graphics hardware feature, the
so-called occlusion queries, to predict the visibility of large parts of the scene on
the fly. This allows much faster rendering since invisible scene parts do not need
to be processed by the graphics hardware. Due to its simplicity and efficiency,
this algorithm has become the de-facto standard for rendering large scenes with
occlusion culling.

This chapter has been completely written by the author, after helpful discus-
sions with Jiří Bittner, who also had an important contribution to the original Co-
herent Hierarchical Culling technique [Bitt04], on which this chapter is based.

In contrast to the other included papers, this is a chapter from an actual pub-
lished book. The GPU Gems book series describes computer graphics research
results and also techniques that fall under the category of “graphics tools,” with the
requirement that they be applicable to real-time rendering with graphics hardware.
This book series has gained a lot of attention also in the academics community, and
has become an important publication venue that reaches both academic researchers
as well as practitioners. Note that in order to appeal to practitioners, the style of
presentation is much more colloquial than a journal article, however this should
not distract from the scientific value of the technique.

1.4.4 Chapter 5: Guided Visibility Sampling

In contrast to on-the-fly visibility culling as described in the previous section,
Guided Visibility Sampling exploits various sampling techniques to precompute
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an accurate visibility solution offline. This saves runtime processing time and al-
lows advanced real-time algorithms like prefetching and network transmission, but
only works for static scene parts. The algorithm is extremely robust and general
since it is based on sampling, but it is also very accurate because it uses sampling
strategies that adapt to the geometry present in the scene.

Initial ideas for this algorithm were discussed by Peter Wonka and Stefan
Maierhofer, who also implemented together with Gerd Hesina a first prototype
system, which was later improved by Kaichi Zhou. The author contributed signifi-
cantly to refining the algorithm, and together with Peter Wonka reimplemented the
whole system based on the new ideas in a more efficient manner. The author also
wrote the complete paper and created all results, while figures were done by Peter
Wonka. Alexander Reshetov provided the integration with Intel’s fast MLRTA ray
tracer [Resh05]. This paper was published at the ACM SIGGRAPH conference,
which is the most important publication venue in computer graphics.

1.4.5 Chapter 6: Instant Points

The wide availability of 3D range scanning devices has recently opened a new
research field inside real-time rendering: the efficient display of huge point clouds.
This chapter describes a system capable of rendering many Gigabytes of point
data at interactive rates through an advanced hierarchical out-of-core rendering
algorithm.

This project was initiated and supervised by the author, while the implementa-
tion was carried out by diploma student Claus Scheiblauer under the guidance of
the author. Michael Wimmer also developed the theoretical framework and wrote
the complete paper. Claus Scheiblauer provided the implementation and results.
This paper was published at the Symposium of Point-Based Graphics, which is
a relatively recent venue, but has quickly become the main venue for presenting
point-based rendering and modeling research.
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• Michael Wimmer and Peter Wonka:
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Rendering Time Estimation for Real-Time Ren-
dering

Michael Wimmer and Peter Wonka

Abstract

This paper addresses the problem of estimating the rendering time for a real-time
simulation. We study different factors that contribute to the rendering time in order
to develop a framework for rendering time estimation. Given a viewpoint (or view
cell) and a list of potentially visible objects, we propose several algorithms that
can give reasonable upper limits for the rendering time on consumer hardware.
This paper also discusses several implementation issues and design choices that
are necessary to make the rendering time predictable. Finally, we lay out two ex-
tensions to current rendering hardware which would allow implementing a system
with constant frame rates.

2.1 Introduction

The quality of a real-time rendering application is determined by several aspects,
including impressive models, visually attractive effects like shadows, reflections
and shading, etc. In this paper we take a look at another component that largely
contributes to high-quality graphics simulation as sought for in computer games,
trade shows, and driving simulators. It is a factor that has often been overlooked
in current products: fluent and continuous motion. For the impression of fluent
motion, it is necessary to render at a fixed high frame-rate, mainly determined by
the refresh rate of the display device (typically 60 Hz or more). Failing to do so
results in distracting and visually displeasing artifacts like ghosting (Figure 2.7)
and jerks [Helm94]. Furthermore, the predictability of frame times is crucial for
the ability to schedule certain events and to coordinate input with simulation and
display. Especially due to the use of hardware command buffers, the time span
between the issuing of a rendering command and its actual execution can easily
be over one frame. If the rendering time of the frame is not known in advance
and frame times have a high variance, the apparent moving speed will change con-
stantly (see Figure 2.6). This is most visible when the viewer is rotating.

To obtain a system with a fixed frame rate, it is necessary to guarantee that the
rendering time does not exceed a certain time limit. One building block of such
a system is a prediction of the rendering time for a given frame. While previous
work [Funk93, Alia99] showed how to build a real-time rendering system with
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guaranteed frame rates when such a prediction function is given, the actual predic-
tion function used for the rendering time estimation should be studied in greater
detail.

In this paper, we undertake a more in-depth study of rendering time in order
to show which simple heuristics can be used for this purpose and how success-
ful they are. Among others, we present an approach based on sampling render-
ing times, and an improved mathematical heuristics based on a cost function. An
important part of this work is the proposal of two hardware extensions—a time-
stamping function and a conditional branch mechanism—which make rendering
time estimations more robust. We show how to implement a soft real-time system
providing fixed frame rates using these extensions. We also skirt practical issues
and design choices encountered when implementing a real-time rendering system,
and give hints and examples for those. In the long run, we aim to use the results of
this paper to construct a soft real-time system with bounded frame times. Render-
ing time estimation can also be used to calculate efficient placement of impostors
in complex scenes.

First, we set out by defining the rendering time function. As the most general
form we propose

t = RT (SG,RA,HW,ST ),

where SG is a scene graph, RA is the rendering action used for traversal, HW is
the hardware, and ST is the current state of the hardware, software and the operat-
ing system. While this form is general enough to incorporate all important effects
that influence the rendering time, it is complicated to use in practice. Therefore,
we will use a simpler form, where the scene graph is an ordered set of objects
X = (x1, ...,xn), with given geometry and attributes xi = (gi,ai). Furthermore, we
assume that the rendering action is implicitly defined by the attributes of the ob-
jects. We thus obtain the following form:

t = RT (X,HW,ST )

This formulation of the rendering time function is the basis for the framework
which we will use to discuss different aspects of the rendering time estimation
problem.

The rest of the paper is organized as follows. Section 2.3 explains the func-
tionality of current rendering hardware, section 2.4 describes our framework to
estimate rendering time and explains the different tasks and factors that contribute
to the rendering time and how to estimate them. In section 2.5 we describe the
crucial parts of the rendering time estimation in greater detail, and in section 2.6
we propose two hardware extensions necessary for a soft real-time system. Sec-
tions 2.2, 2.7 and 2.8 present previous work, results and conclusions.
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Figure 2.1: This figure illustrates different attributes of an indexed triangle strip.
The strip consists of 6 indices, then a restart denoted by - and three more vertices.
The number of polygons is 5, the number of indices is 9, the number of vertices is
three times the number of polygons (15) and the number of actually transformed
vertices is 6, i.e., each vertex is only transformed once, as they all fit into the vertex
cache.

2.2 Previous Work

Funkhouser and Séquin [Funk93] demonstrate a real-time rendering system that
bounds frame times through appropriate level-of-detail (LOD) selection. They as-
sign a cost and a benefit to each LOD for each object. The optimization tries to
select for each object such a LOD that the sum of the benefit values is maximized,
given a maximum allowable cost. The cost metric used is equivalent to the follow-
ing rendering time estimation:

RT (x) = max(c1 ∗#polys(x)+ c2 ∗#v(x),c3 ∗#pix(x))

where x is the LOD in consideration, #polys is the number of polygons and
#v is the number of vertices of the object, and #pix is the number of pixels in
the projection. The parameters c1, c2 and c3 are constants that are determined
experimentally by rendering several sample objects.

While vertex and polygon counts are both reasonable estimates for geometric
complexity, a better match for the way modern GPUs actually behave is the number
of actually transformed vertices, i.e., the number of vertices that are not taken
from the post-transform vertex cache used by such GPUs, but actually fetched and
transformed. Hoppe uses this number as a basis for a cost function used for the
creation of efficient triangle strips [Hopp99]. While Hoppe additionally considers
the index transfer for indexed triangle strips, due to the small size of indices this
factor plays only a limited role for rendering time estimation. See Figure 2.1 for
an illustration of the different concepts.
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Aliaga and Lastra [Alia99] construct a view-cell based real-time rendering sys-
tem. They sample the view space with a large number of viewpoints, where each
sample viewpoint defines a view cell around it. For each cell, they select objects
for direct rendering according to a cost-benefit function. The remaining objects
are replaced by layered depth images. The cost metric is based on the number of
triangles and ignores the influence of rasterization. The proposed rendering time
estimation is therefore

RT (x) = c1 ∗#tris(x)

where c1 is determined by the triangle rate of the given hardware. The accuracy
of these estimations will be compared with our estimations in section 2.7.

The problem of maintaining a specified frame rate has also been addressed
in the Performer system [Rohl94], however based on a reactive LOD selection
system. However, bounded frame rates can only be guaranteed using a predictive
mechanism. Regan and Pose [Rega94] demonstrated a system capable of maintain-
ing fixed frame rates with a special-purpose display controller for head-mounted
displays based on just-in-time image composition.

2.3 Rendering Hardware Overview

This research focuses on consumer hardware, namely a PC with a state-of-the-art
graphics card (current examples are NVIDIA’s GeForce or ATI’s Radeon prod-
ucts). Consumer hardware is not naturally geared towards the construction of a
real-time rendering system, because hardly any tools are available to give a hard
time limit for the execution of a given set of rendering commands. However, these
systems are very wide spread and used by many interactive rendering applications.
Therefore, it seems worthwhile to provide a best-effort estimation of the execution
time, knowing that a hard real-time rendering system cannot be achieved. So we
aim at the construction of a soft real-time rendering system working with statistical
guarantees for the rendering time.

In the following we give a functional overview of the rendering system (see
Figure 2.2). The rendering process uses the CPU and the GPU in parallel. The ap-
plication is executed on the CPU and sends commands to the GPU via the graphics
driver. We will use a typical frame of a simple rendering engine to illustrate this
functionality (see also Figure 2.4). On the CPU side, the application issues a clear
screen (clr) command to initialize the frame buffer. Then the application traverses
all objects xi = (gi,ai). For each object, the application has to set the state of the
graphics hardware according to the attributes ai and then send the geometry gi.
The driver sends the commands to a command buffer (FIFO). The GPU reads com-
mands from this buffer and executes them. State commands change the state of
the pipeline according to the attributes of the primitives. Geometry is sent down
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Figure 2.2: This figure shows an overview of the graphics architecture. The arrows
indicate the most important flows of data.

the pipeline starting with the vertex processing unit, after which it is rasterized into
fragments that in turn go to the fragment processing unit. The primitives, mainly
indexed triangle strips, consist of vertex data and index data. For efficiency, both
vertex and index data are either stored in AGP memory or in video (=graphics card)
memory, both of which are directly accessible by the GPU.

2.4 The rendering time estimation framework

In this section we will propose a framework for analyzing the rendering time. The
main idea is to assume a subdivision of the rendering process into a number of
conceptually independent tasks which can be estimated separately. The remaining
interdependencies that are not captured by our model can usually be subsumed
under a so-called system task. Note that the test system used to obtain the empirical
results shown in this section is described in section 2.7.

2.4.1 The refined rendering time estimation function

The refined rendering time estimation function RT which is used for the discussion
in this section is made up of estimations ET for four major components (tasks),
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• system tasks (ETsystem),

• CPU tasks (ETCPU )

• idle time (ETCPU
idle ,ET GPU

idle ), and

• GPU tasks (ET GPU ),

in the following way:

RT = ETsystem +max(ETCPU ,ET GPU)

with

ETCPU = ETCPU
nr +ETCPU

r +ETCPU
mm +ETCPU

idle

and

ET GPU = ET GPU
f s +ET GPU

r +ET GPU
mm +ET GPU

idle .

Here, the indices nr denote non-rendering code, f s frame setup, r rendering
code, mm memory management, and idle is idle time.

2.4.2 System tasks

The operating system and other applications use time for tasks like network ser-
vices, indexing services, file system, memory managers etc., some of which can-
not be totally eliminated even during the execution of a higher-priority process.
Further, the graphics driver itself might schedule certain tasks like optimization
routines, which are not documented and cannot be predicted. This time is denoted
as ETsystem in our framework, and is the main reason for variations in frame times
for a single view.

To understand its influence on the rendering time, we conducted the following
experiment. In a test scene we selected a number of individual viewpoints and
measured the rendering time for 10,000 subsequent renderings for each viewpoint.
All non-critical services were turned off (including indexing and other applications
with file access), and the rendering thread was set to a higher priority, thus basi-
cally eliminating all non-critical operating system activity. Synchronization with
the vertical retrace was also turned off in order to eliminate any dependency on
the physical display device. We expected the rendering time variations to resemble
a lognormal distribution, which would be typical for a process involving comple-
tion times (this has been observed, for example, in quality control engineering and
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Figure 2.3: This graph shows an example for an empirical density function of the
rendering time derived through 10,000 renderings from the same viewpoint.

traffic flow theory [Gart93]). However, there are variations that follow a quite pe-
culiar pattern. Figure 2.3 shows the empirical probability density function for one
of the chosen viewpoints. It does not resemble any of the well-known distribution
function.

One option is to assume that the variation of this distribution represents the
influence of system tasks. For example, the bimodal nature of the distribution sug-
gests that there is a regular system task (e.g., the thread scheduler, related to the
thread quantum) which is executed approximately every 2 to 3 frames and takes
about 0.5 ms. The variation of the distribution also depends on the total execution
time of the frame. Since we aim for a system with fixed frame times, we estimate
the time of the system tasks as a constant c representing the maximum deviation of
the minimum rendering time for a given confidence interval and target rendering
time: ETsystem,con f idence = c. The constant c is determined by calculating the width
of the given confidence interval with respect to the empirical probability distribu-
tion function of a test measurement. Although the distribution can vary greatly near
the mean value, we found the extremal values and therefore the estimated constant
to be quite consistent. For our test system, we used a confidence interval of 99%,
from which we calculated c as 1.52ms.
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2.4.3 CPU tasks

The CPU is responsible for several tasks. First, there is application code that does
not directly contribute to rendering, like artificial intelligence, animation, collision
detection, sound and networking (ETCPU

nr ). Second, there are rendering-related
tasks like scene-graph traversal, view-frustum culling and dynamic state sorting
(ETCPU

r ). Third, there are issues of memory management like the recalculation of
dynamic vertex data and texture downloads (ETCPU

mm ). Fourth, there is the idle time
when the GPU is too busy to accept further commands (ETCPU

idle ).

CPU memory management

Texture memory management. If not all textures for a given scene fit into video
memory (and can therefore not be downloaded before rendering), a memory man-
agement routine is required which selects for each frame which textures need to
be downloaded. For efficiency reasons [Carm00] and for predictability, this should
not be left to the graphics driver. The texture management time ETCPU

mm,tex is given
by the sum of download times for all textures selected for download for a given
frame.

Geometry memory management. Similarly, static geometry needs to be man-
aged by a geometry management routine if not all the static geometry in a scene fits
into memory directly accessible by the GPU (video memory and AGP memory).
The geometry management time is ETCPU

mm,geom = c ∗ g, where g is the amount of
memory for the geometry scheduled for download in the current frame, and c is the
memory copying speed. In the case of indexed geometry, indices are transferred
either during the API call (in unextended OpenGL) or are managed together with
the vertex data. Dynamic geometry, i.e. animated meshes where vertex positions
change, should be written directly to AGP memory upon generation in order to
avoid double copies. For a comparison of geometry download methods and their
influence on the rendering time see also section 2.4.5.

2.4.4 Idle time

Ideally, CPU and GPU run in parallel. However, sometimes either the CPU or the
GPU sits idle while waiting for the other part to supply data or complete a task.
This (undesirable) time is called idle time and occurs in the graphics driver, which
runs as a part of the user application on the CPU. The issue of idle time arises when
the graphics driver writes commands for the graphics card to the command buffer
and this buffer is either full or empty:

• When the buffer is full, the driver blocks the application and returns only
when the buffer can be accessed again. This usually means that the CPU
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Figure 2.4: This figure shows how CPU and GPU work in parallel. When the GPU
starts rendering the current frame (vp(i)), the CPU has already written most of
the rendering commands for this frame to the command buffer. When the CPU is
finished with the current frame, it can prepare the next frame (vp(i + 1)), starting
with CPU-intensive non-rendering tasks and memory management, while the GPU
is still busy rendering the current frame.

is supplying graphics commands fast enough and could be used to do more
complex non-rendering calculations.

• When the buffer is empty, the GPU is starved for rendering commands (this
situation is therefore also known as back-end starvation). The CPU is not
supplying graphics commands fast enough and the GPU sits idle, leaving
some of its potential unused.

A rendering application which makes best use of the available graphics hard-
ware should strive for maximum parallelism and avoid backend starvation (so that
ET GPU

idle = 0). If this cannot be achieved because the non-rendering code is causing
the starvation and cannot be optimized, the unused time in the GPU can still be
used to execute more complex shaders or draw more complex geometry without
affecting the rendering time. In the following, we therefore assume a balanced
system, where the GPU is always busy (ET GPU

idle = 0) and the CPU might be oc-
casionally idle. In our current implementation, the engine performs non-rendering
code for the next frame when the GPU is still busy drawing the current frame. This
is illustrated in Figure 2.4.

Note that some graphics commands require other buffers apart from the com-
mand buffer which can also become full and lead to idle time. The most important
example are immediate-mode geometry commands in OpenGL, where the driver
accumulates vertices in AGP or video memory buffers. These buffers are how-
ever usually quite small, so that the driver has to stall the CPU on most rendering
commands and practically all parallelism between CPU and GPU is lost. Note that
these commands are also undesirable because of the overhead imposed by the large
number of API calls required. Geometry should therefore only be transferred un-
der application control using extensions [NVID03b, ATI 03], which also has the
advantage that static geometry need not be sent every frame (see section 2.4.3).
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2.4.5 GPU tasks

The rendering tasks on the GPU typically constitute the most important factors for
the rendering time. We can identify the following tasks [Prou01]:

Per-frame calculations. At the beginning of each frame, the frame buffer has
to be cleared, and at the end of each frame, the back buffer has to be swapped
with the front buffer. In a real-time setting, the swap should be synchronized with
the vertical retrace of the screen in order to avoid tearing artifacts. While actual
buffer swap times are negligible, clear times and buffer copy times (for windowed
applications where buffer swapping is not possible) need to be taken into account
in the estimation.

Per-primitive-group calculations. State setup including texture bind, mate-
rial setup, vertex and fragment shader bind and shader parameters. The speed of
this stage is determined by the number and type of state changes in a frame (with
changes in vertex and fragment programs usually being the most expensive, fol-
lowed by texture changes).

Per-primitive calculations are not fully developed in current graphics hard-
ware. One example on current hardware is the adaptive refinement of triangles
based on vertex normals [ATI 01].

Per-vertex calculations can be further broken down into index lookup (if an
indexed rendering primitive is used) vertex fetching from video or AGP memory,
and execution of the vertex shader. The time spent for these calculations is deter-
mined by the complexity of the vertex shader and the number of actually trans-
formed vertices (see section 2.2), which can be determined by doing a FIFO-cache
simulation for the geometry to be estimated. Note that one way to minimize the
number of actually transformed vertices needed for a given geometry is to use a
vertex-cache aware triangle stripper [NVID03a]. Note also that the vertex cache
can only work for indexed primitives and when geometry is stored in AGP or video
memory, therefore non-indexed primitives should only be used for geometry con-
taining no shared vertices.

Triangle setup is the interface between per-vertex and per-fragment calcula-
tions. Triangle setup is usually not a bottleneck in current GPUs.

Per-fragment calculations or rasterization. These calculations are done by the
fragment shader and subsequent stages. Examples include texture mapping, multi-
texturing, environment mapping, shadow mapping etc. The speed of this stage is
determined by the complexity of the fragment shader, but also by the efficiency of
early fragment z-tests present in newer cards, and texture memory coherence.

In the following, we discuss some other factors influencing rendering time,
including bottlenecks, rendering order and the type of memory used.
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simple pixel complex pixel difference
simple vertex 4.969 7.35 2.381
complex vertex 9.859 11.856 1.997
difference 4.89 4.506

Table 2.1: This table shows the rendering time for one viewpoint in the terrain
scene. If the complexity of the vertex shader is increased, the rendering time in-
creases (independent of the fragment shader complexity). If the complexity of the
fragment shader is increased the rendering time increases as well (independent of
the vertex shader complexity). This shows the lack of parallelism between the
fragment and geometry stages.

The myth of the single bottleneck in an application

A common misunderstanding with regard to the rendering pipeline is that the speed
of an application is defined by a single bottleneck. While this is true for each
particular point in time, the bottleneck can change several times even during the
rendering of one single object. Due to the small size of post-transform vertex
caches, the fragment and the geometry stage can work in parallel only for one par-
ticular triangle size, which depends on the complexity of the vertex and the frag-
ment shader. Triangles larger than this “optimal triangle” usually stall the pipeline,
whereas smaller triangles will cause the fragment stage to sit idle.

While for some far-away objects the rendering time is determined only by the
geometry stage, most objects consist of several triangles larger than the optimal tri-
angle and several ones that are smaller. An example is shown in Table 2.1, where
neither vertex nor fragment shader can be made more complex for free (as should
be the case for a single bottleneck). This effect needs to be incorporated in ren-
dering time estimation heuristics. Our results indicate that a sum of fragment- and
geometry terms might be better suited to estimate rendering time than taking the
maximum of such terms [Funk93]. A new heuristic based on this observation is
introduced in section 2.5.3.

Rendering order

The rendering order can influence rendering time in two ways: First by the number
of state changes required, which suggests that objects should be sorted by their
rendering modes. Second by the effect of pixel occlusion culling, which suggests
that geometry should be rendered front to back in order to reduce the amount of
fragments that actually need to be shaded.

Table 2.2 illustrates that mode sorting improves rendering time especially in
CPU-limited cases because state changes are CPU intensive. The other test scenes
do not profit from mode sorting because they either contain no state changes (ter-
rain scene), or for other reasons (forest scene, no improvement although 194 state
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Sort order: no sort matrix/ texture/ presorted
texture matrix text./mat.

texture changes 984 449 211 211
material changes 639 525 110 110
alpha changes 186 28 12 12
cpu limited:
GPU time in ms 9.188 7.725 8.539 7.07
geometry limited:
GPU time in ms 14.634 14.328 14.138 14.138

Table 2.2: Examples for mode sorting in the city test scene in a CPU-limited and a
geometry-limited setting (with a more complex vertex shader). The column head-
ers indicate the sort order used (e.g., in the second column, first by transformation
matrix, then by texture). In the presorted case, there is no CPU overhead.

normal f2b b2f
GPU time in ms 10.7 9.143 12.552

Table 2.3: Distance sorting (front-to-back and back-to-front) in the city scene in a
fill-limited setting.

changes are reduced to 2), in which case dynamic mode sorting even increases
rendering time.

Table 2.3 shows the effect of distance sorting in a strongly fill-limited setting,
as compared to normal rendering (no sorting).

GPU memory management

There are several possible choices in which to send geometry to the graphics hard-
ware, including whether to use indexed or non-indexed primitives, which type of
memory to use (AGP or video), which memory layout to use (interleaved/non-
interleaved vertex formats) and which routine to use for the memory copy. The
graphics hardware and the driver are usually poorly documented and the optimal
choice can only be found by intensive testing.

The fastest type of memory is generally video memory, but it only comes in
limited quantities, and streaming geometry directly into video memory during ren-
dering might reduce bandwidth for texture accesses. Table 2.4 shows that render-
ing from and copying to video memory can be done in parallel without the two
influencing each other significantly. This means that geometry downloads to video
memory don’t increase the overall rendering time if there is enough CPU time
left. However, when rendering is already CPU limited (Test4), the total rendering
time increases by the full time needed for the copy. Therefore, dynamic geometry
transfers should be avoided in this case and as much geometry as possible stored
statically in video memory. Test2 shows that in the case of simple vertex shaders,
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rendering copying
[ms] [tv/sec] [ms] [MB/sec]

Test1: terrain video memory
independent 4.36 19.73 1.7 793
parallel 4.59 18.75 1.9 733
Test2: terrain AGP memory
independent 4.95 17.38 1.4 952
parallel 6.27 13.72 3.3 420
Test3: terrain AGP memory, interleaved
interleaved AGP
independent 4.41 19.52 1.4 952
parallel 5.04 17.06 2.9 481
Test4: city video memory CPU limited
independent 9.28 11.878 4.1 793
parallel 14.167 7.78 5.1 644

Table 2.4: The table shows rendering and memory copy times in two cases: in-
dependent shows the times for rendering and copying alone; parallel shows the
slowdown when rendering and copying are done concurrently and compete for the
same memory (tv/sec are the actually transformed vertices per second).

using AGP memory can slow down the GPU due to the limited bandwidth of the
AGP bus, especially when geometry is also copied to AGP memory in parallel.
This has to be considered when working with animated meshes. An interesting
observation (Test3) is that the geometry layout can influence the rendering speed
so that terrain rendering with interleaved geometry from AGP memory is almost as
fast as rendering from video memory. Note also that these results are close to the
maximum transformation capability of the used rendering hardware.

2.5 Methods for rendering time estimation

In this section, we give several heuristics which can be used to calculate the ren-
dering time estimation function. These heuristics are then compared and evaluated
in section 2.7.

To obtain an estimation for the rendering time, we have to choose a method
in a spectrum that is spanned by the extremes of measuring and calculating. We
propose three basic methods: one sampling method that is mainly defined by mea-
surements (and gives RT directly), another hybrid method that is a tradeoff between
sampling and heuristic calculations and a third method that uses a heuristic func-
tion based on the number of the actually transformed vertices and rendered pixels
(the latter two methods estimate ET GPU

r , i.e., the other terms of RT have to be
estimated separately as described in section 2.4).
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Figure 2.5: This figure shows precalculated per-object sampling. The rendering
time estimation is parameterized with three angles, two of those are shown in this
2D figure.

2.5.1 View-cell sampling

The proposed sampling method works for a view-cell based system, where a poten-
tially visible set (PVS) is stored for each view cell. For each view cell we discretize
the set of view directions, randomly generate n views around each discretized di-
rection and measure the rendering time for each view. The maximum rendering
time of the n sample views is used as an estimation for the total rendering time RT
of the direction and the view cell under consideration.

2.5.2 Per-object sampling

The hybrid method estimates the rendering time of a set of objects by adding the
rendering time estimations of the individual objects. The assumption is that when
two sets of objects are rendered in combination (X1⊕X2), the rendering time is at
most linear with respect to the rendering times of the original sets X1 and X2.

ET GPU
r (X1⊕X2)≤ ET GPU

r (X1)+ET GPU
r (X2)

To estimate the rendering time of a single object, we parameterize the rendering
time estimation function by three angles ET GPU

r (x) = ET GPU
r (x,α,γ,φ) (see Figure

2.5 for a 2D view). The angle α is the angle between the two supporting lines
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on the bounding sphere. This angle (which is related to the solid angle) is an
estimate for the size of the screen projection. The angles γ and φ (for elevation)
describe from which direction the object is viewed. In a preprocess, we sample
this function using a regular sampling scheme and store the values in a lookup
table together with the object. As the angle α becomes smaller, the rendering time
will be geometry limited and not depend on the viewing parameters any more. We
use this observation to prune unnecessary test measurements. This rendering time
estimation can be used in two ways:

Per-viewpoint estimation: For an online estimation, the rendering time is
looked up in the table stored with the object with respect to the current viewpoint
and view direction. Care has to be taken not to make the estimation overly conser-
vative: For objects straddling the view frustum, the angle alpha has to be clipped
to the view frustum. This is especially important for nearby objects since they tend
to cover a larger screen area, i.e., they usually contain several large rasterization-
limited triangles which add significantly to the estimated time.

Per-view-cell estimation: For a view cell, the rendering time estimation is
more involved. As in view-cell sampling (section 2.5.1), we discretize the set of
possible viewing directions from a view cell. For each discretized direction, a
conservative estimate of the rendering time is calculated separately in the following
way: We seek for each object the point on the view-cell boundary where the object
bounding sphere appears largest in the viewing frustum. This point lies either
on a boundary vertex of the view cell, or on a boundary face such that the view
frustum given by the viewing direction is tangent on the object bounding sphere.
The rendering time estimation associated with this point is then looked up as in
the per-viewpoint estimation, and added to the estimated rendering time for this
viewing direction. Finally, the rendering time estimation for the whole view cell is
calculated as the maximum of the rendering time estimations from the discretized
viewing directions.

2.5.3 Mathematical heuristics

As the last model, we compare several mathematical heuristics for the rendering
time estimation ET GPU

r . Note that in previous work, the first 3 heuristics shown
here were used alone, without regard for the other components of RT described in
this paper. We propose to the presented heuristics within the complete rendering
time estimation framework, which allows taking into account effects like texture
and geometry management etc.

The first heuristic H1 is the triangle count [Alia99]. The assumption on which
this heuristic is based is that the ratio of actually transformed vertices to triangles
is uniform over the whole scene, and that the rendering time is determined by the
geometry stage.
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ET GPU
r (x) = c∗#tris

where #tris is the triangle count of an object, and c is the triangle rate for a
given hardware.

The second heuristic H2 is the actually transformed vertex count [Hopp99].

ET GPU
r (x) = c∗ tv

where tv is the number of actually transformed vertices and c is the vertex rate
for a given hardware. This heuristic reflects the geometry processing stage more
accurately than H1, but still neglects the influence of rasterization on rendering
time.

A more complete heuristic (H3) is Funkhouser’s cost function [Funk93] with

ET GPU
r (x) = max(c1 ∗#polys(x)+ c2 ∗#v(x),c3 ∗#pix(x))

where x is the object under consideration, #polys is the number of polygons
of the object, #v is the number of vertices of the object and #pix is the number of
pixels in the projection.

As was discussed in section 2.4.5, the bottleneck in a rendering pipeline can
shift several times even when rendering a single object. The maximum of geome-
try and rasterization terms as used in H3 is actually a lower bound for the actual
rendering time, whereas the sum of the two terms constitutes the upper bound, and
is therefore a more conservative estimation. The experiments in section 2.4.5 also
suggest that in practice, the actual rendering time often tends towards the sum. Fur-
thermore, the factor which determines geometry transformation time is the number
of actually transformed vertices and not just the number of vertices or polygons.
Based on these two observations, we propose a new rendering time estimation
heuristic H4 which improves upon the previous ones:

ET GPU
r (x) = c1 ∗#tv(x)+ c2 ∗#pix(x)

The heuristics presented here will be compared in section 2.7. However, none
of the rendering time estimation functions shown in this section is sufficient to
build a soft real-time system, either because timing results are not accurate enough
with current timing methods (for the sampling approaches) or because estimated
rendering times can sometimes be exceeded in practice even if the prediction is
very accurate (for the mathematical heuristics). In the next section, we will propose
hardware extensions to overcome these problems.
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2.6 Hardware extensions for a soft real-time system

In this section, we introduce two hardware extensions that make it possible to im-
plement a soft real-time system. The extensions deal with two problems encoun-
tered when using rendering time estimation: the timing accuracy problem and the
estimation accuracy problem.

2.6.1 The timing accuracy problem

All the heuristics presented in section 2.5—especially the per-object sampling
method—rely to some extent on the ability to measure the rendering time for spe-
cific objects. While it is relatively easy to measure the time taken by a specific
CPU task, it is very difficult to obtain such measurements for GPU-related tasks.
CPUs provide an accurate time-stamping mechanism via an instruction that returns
the current CPU clock cycle counter. Inserted before and after a number of instruc-
tions, the difference of the counters can be used to calculate the time required for
executing the instructions.

The GPU, however, is a separate processing unit, and any timing mechanism
implemented on the CPU will either give only information about the interaction
with the command buffer, or include significant overhead if the GPU is explic-
itly synchronized before each timing instruction (e.g., via the OpenGL command
Finish).

2.6.2 The time-stamping extension

Due to the large uncertainties that such inaccurate timing can introduce in the ren-
dering time estimation, it seems useful to implement timing directly on the GPU
and to extend current hardware with a time-stamping function, which can be used
for acquiring the accurate measurements needed to set up the rendering time es-
timation functions in section 2.5 (either for sampling or for calibrating one of the
heuristic formulae).

This function should operate similarly to the OpenGL occlusion-culling exten-
sion: A time-stamp token is inserted into the command buffer, and when this token
is processed by the GPU, a time stamp representing the current GPU time (e.g., a
GPU clock cycle counter) is stored in some memory location and can be requested
by an asynchronous command. Due to the long pipelines present in current GPUs,
there are two possible locations for setting the time stamp: (1) at the beginning of
the pipeline (when the token is retrieved from the command buffer), and (2) at the
end of the pipeline, which is the more accurate solution. The difference between
two such time stamps can then be used to calculate the time required for the GPU to
render an object much in the same way as for a CPU to execute some instructions.
The communication paths between the backend of the GPU and the CPU necessary
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Figure 2.6: This diagram shows the strong variations in perceived movement speed
during a frame skip (frame 2 is repeated).

for such an extension are already in place (they are used to transmit pixel counters
used in occlusion queries).

2.6.3 The estimation accuracy problem

Funkhouser [Funk93] notes that for the metric H3, the actual rendering time does
not deviate more than 10% from the predicted rendering time in 95% of frames.
However, this means that in a real-time setting assuming a frame rate of 60 Hz,
there would be up to 3 skipped frames per second. Figure 2.6 shows the strong
variations in perceived movement speed caused by a single frame skip. In the
accompanying video, we show that even one skipped frame every several seconds
is unacceptable if a moderately smooth walkthrough is desired. The video also
shows that switching to a lower frame rate (such as 30 Hz) for a longer duration is
not acceptable either, due to ghosting artifacts which appear when the frame buffer
is not updated at each screen refresh (see Figure 2.7).

For a quality real-time application we aim for an estimation accuracy higher
than 99.9%, or a maximum of 1-2 frame skips per minute. Even the metric H4
or the per-object sampling method using the time-stamping extension (both intro-
duced in this paper) will not be able to provide such an accurate estimation. We
therefore propose a hardware extension that can “fix” estimation errors during the
rendering process.
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Refresh Rate = Update Rate

Motion

Refresh Rate = 3 * Update Rate

Motion

Figure 2.7: Ghosting artifact when the frame rate doesn’t match the screen refresh
rate (recreated after an image from [Helm94]). Such artifacts are especially visible
on sharp edges in the images, and when the viewer is rotating.

2.6.4 The conditional branching extension

We propose using a conditional branch in graphics hardware to switch to a coarser
LOD if the remaining frame time is not sufficient. Such a conditional branching
extension consists of a start token containing a sequence of numbers tr1 , . . . , trn , and
a branch token. When the GPU encounters the start token, it compares each tri with
the time remaining until the next vertical retrace. If tr j is the first number that is
smaller than this time, all commands in the command buffer up to the j-th encoun-
tered branch token are skipped. Then all commands until the next branch token are
executed, and finally all commands until the n-th branch token are skipped again.

The values tri should be set to the result of the rendering time estimation func-
tion for all remaining objects for this frame, including the current object at a spe-
cific level of detail i. Since any tasks done by the driver on the CPU side will
have to be executed for all conditional branches, such branches should only con-
tain rendering commands which refer to geometry already stored in AGP or video
memory, which can be accessed by the GPU directly.

2.6.5 Soft real-time system

Using the two proposed extensions, a soft real-time system can be implemented.
The time-stamping extension guarantees accurate timings for the rendering time
estimation function. Based on this function, appropriate LODs are selected for
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each object in each frame in such a way that the total frame time is not exceeded
(there are several ways how to do that, but the LOD selection process is not topic
of this paper). To guarantee that no frame is skipped even if the rendering time
estimation fails, some objects (starting with those that (1) are already at a certain
distance from the viewer, to reduce popping, and (2) still have some geometric
complexity so that their rendering time is not negligible) are accompanied with a
small number of coarser LODs, which are automatically selected by the graphics
hardware if the remaining time is not enough to render the predetermined LOD.
Note, however, that such a system is still a soft real-time system because frame
skips can still occasionally occur (e.g., due to unforeseeable stalls caused by the
operating system), but they will be reduced to a negligible number.

In order to guarantee that no geometry has to be transferred over the bus for
objects that are not actually rendered, all LODs for all objects could be stored in
GPU-accessible memory at the beginning of the walkthrough, if there is sufficient
memory. In general, the geometric data for the LODs will be managed along with
other geometric data as explained in section 2.4.3. We do not expect the additional
data required by the LODs to be a significant burden on the bandwidth between
CPU and GPU, since not all LODs for each object, but only a small number of
additional LODs will be used. In an analogy to mip-mapping, the memory required
for the lower LODs should not exceed the main model—this holds true for both
discrete LODs (where successive levels should differ by a significant number of
triangles) and progressive LODs (where lower levels are part of the higher levels).

2.7 Implementation and results

2.7.1 Test setup and models

The empirical values for all tables in this paper were obtained on an Athlon
XP1900+ with an NVIDIA GeForce3 graphics card. The graphics API was
OpenGL [Woo99] and the operating system Windows 2000. All timings were
taken by synchronizing the pipeline (using the glFinish instruction) and read-
ing the processor clock cycle counter both before and after rendering the object to
be timed. The object was actually rendered several times between the two readings
in order to minimize the influence of the synchronization overhead on the timing.

We will shortly describe the models that we used for the measurements in the
paper (see also Table 2.5). The first scene is a model of a city (see Figure 2.8), our
main benchmark. A PVS is calculated for each cell in a regular grid of 300x300
10m2 view cells [Wonk00]. The second model is a textured terrain from another
city (see Figure 2.9). The third model is a forest scene (see Figure 2.10) consisting
of 157 trees with varying complexity. Each object in each scene consists of one or
several lists of indexed triangle strips, where each strip can have a different texture.
Visibility and view-frustum culling works on the object level. The ratio of actually
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value city terrain forest
#objects 5609 1 157
#triangles 3,453,465 86,400 579,644
#tv 6,419,303 86,000 1,028,978
#tv / tri 1.86 0.99 1.78
#textures 88 1 2
#state switches (sw) 14267 1 314

Table 2.5: Some descriptive values for the test scenes. #objects is the number
of objects in the scene that are handled by the occlusion-culling or view-frustum
culling algorithms. #tv is the number of actually transformed vertices.

h1 h2 h3 h4 pos
city 3.27 0.7 1.12 0.26 1.41
forest 30.35 25.5 20.8 20.5 5.41

Table 2.6: Average squared errors for per-viewpoint estimations (ms2). The newly
introduced heuristics h4 and pos (per-object sampling) show improvements over
the previous ones.

transformed vertices per triangle shows how well the scene is adapted to exploiting
the vertex cache. State switches and triangles per state switch indicate the traversal
overhead on the CPU and the GPU.

2.7.2 Comparing the per-viewpoint estimation methods

To compare the quality of a prediction function, we conducted the following test.
We recorded a path through the test scenes and compared the prediction function
for each viewpoint with the actual frame time. We compare the time for all four
mathematical heuristics (h1–h4) and per-object sampling (pos). The constants in
the mathematical heuristics were determined using linear regression for 10,000 test
measurements of different objects.

For each frame we calculate the squared difference between estimated and mea-
sured frame time and take the average of these values as a criterion for the quality
of the rendering time estimation (Table 2.6). We use the city and the forest scene
for this test.

In the city scene we can see that the proposed per-object sampling heuristic
provides reasonable results, but due to the timing inaccuracy problem it is inferior
to all heuristics except for the triangle count. The forest scene is more challeng-
ing to predict and here per-object sampling performs much better than the other
algorithms. The newly proposed heuristic h4 based on adding geometry and ras-
terization terms performs better than the previous mathematical heuristics in both
scenes, and is significantly better than all other heuristics in the city scene.
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Figure 2.8: A snapshot of the city scene.

Figure 2.9: A snapshot of the terrain scene.
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Figure 2.10: This figure shows a snapshot of the forest scene. Note that each tree
consists of 6654 actually transformed vertices.

2.7.3 Comparing the per-view-cell estimation methods

For the city scene, we precalculated a PVS for a regular view-cell subdivision.
Then we recorded a 1000 frame walkthrough for the per-view-cell sampling
method and the per-object sampling method. Per-view-cell sampling underesti-
mated 2 frames and resulted in an average squared error of 0.64. The per-object
sampling method underestimated no frame, but due to the timing accuracy problem
the average squared error was increased to 2.33.

2.7.4 Hardware extension

In the accompanying video, we simulated the conditional branching extension by
randomly selecting some objects for some frames which receive a different LOD
than the designated one, as would be the case if the rendering time estimation were
incorrect. This effect is compared to the conventional frame-skip effect.

2.7.5 Discussion

The results obtained during our tests, especially for the per-viewpoint estimation
methods, make it difficult to give a unique recommendation on which rendering
time estimation to use. For example, the per-object sampling method (pos) gives
better results than the mathematical heuristics in the forest scene, but is not so well
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suited for the city scene. The reason for this are the timing inaccuracies discussed
in section 2.6.1. The individual objects in the forest scene consist of a much higher
number of primitives than in the city scene, which reduces the influence of the
inaccuracies and makes the estimations of the individual objects more precise. The
mathematical heuristics, on the other hand, do not perform so well on the forest
scene because this scene contains triangles of strongly varying screen projections,
which influences the rendering time in ways that a single analytic formula is not
able to capture.

Another factor which will influence the decision on a suitable rendering time
estimation method is the involved computational effort. While the per-object sam-
pling method can provide potentially superior results (see the forest scene), it also
requires a costly sampling step for each individual object.

In summary, we recommend the per-object sampling method in cases when an
exact estimation is critical and the mathematical heuristics fail. This is likely to
happen for objects with many triangles of strongly varying screen projections. In
all other cases, the newly proposed heuristic h4 presents an improvement over pre-
vious heuristics. However, when the hardware extensions proposed in this paper
are available, the per-object sampling estimation will be significantly more attrac-
tive, if one is wiling to invest the effort in preprocessing.

2.8 Conclusions

In this paper, we introduced a framework for estimating the rendering time for
both viewpoints and view cells in a real-time rendering system. We showed that
previous work only captures certain aspects of the rendering time estimation and
is only applicable under controlled circumstances. However, our aim is to achieve
a system with a constant frame rate of at least 60 Hz in order to avoid annoying
ghosting artifacts and frame skips. We propose several new rendering time esti-
mation functions to be used in our framework, including one based on per-object
sampling (pos), and one based on an improved mathematical heuristic (h4), and
demonstrated their applicability in a walkthrough setting. While the new heuristics
showed significant improvements over previous methods in some cases, we also
observed that their effectiveness is hampered by limitations in current graphics
hardware, which is not suited for constant frame rate systems. We therefore pro-
pose two hardware extensions that remedy this problem, one for accurate timing
measurements, and one for conditional branches in the rendering pipeline.
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Light Space Perspective Shadow Maps

Michael Wimmer, Daniel Scherzer and Werner Purgathofer

Abstract

In this paper, we present a new shadow mapping technique that improves upon the
quality of perspective and uniform shadow maps. Our technique uses a perspec-
tive transform specified in light space which allows treating all lights as directional
lights and does not change the direction of the light sources. This gives all the
benefits of the perspective mapping but avoids the problems inherent in perspec-
tive shadow mapping like singularities in post-perspective space, missed shadow
casters etc. Furthermore, we show that both uniform and perspective shadow maps
distribute the perspective aliasing error that occurs in shadow mapping unequally
over the available depth range. We therefore propose a transform that equalizes
this error and gives equally pleasing results for near and far viewing distances. Our
method is simple to implement, requires no scene analysis and is therefore as fast
as uniform shadow mapping.

3.1 Introduction

Shadows belong to the most important effects to convey realism in a computer-
generated scene. One of the most popular shadow generation algorithms is shadow
mapping [Will78], due to its simplicity, generality and high speed. With shadow
mapping, the scene is first rendered from the view of the light, storing the depth
values in a separate buffer. When the scene is then rendered from the normal
viewing position, each pixel is transformed again into the light view, and its depth
value compared to the depth value stored in the shadow map. If the depth value of
the shadow map is nearer to the light source, the pixel is in shadow.

Like all image-space algorithms, shadow mapping suffers from aliasing arti-
facts due to quantization and perspective projection. Recently, several approaches
have tried to reduce those aliasing artifacts. One particularly promising idea, per-
spective shadow maps [Stam02], is based on a perspective reparameterization of
the shadow map. The original perspective shadow map technique suffers from a
few drawbacks, which result mostly from the fact that the chosen perspective map-
ping is based on the observer projection:

• The lights have to be transformed into post-perspective space, and frequently
change their type (from point to directional and vice versa, or from a normal
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Figure 3.1: Light space perspective shadow maps (LiSPSM) (left) and the cor-
responding warped light view (including the eye frustum) (right). Note the high
shadow detail both for near and distant objects.

to an “inverted” lightsource). Thinking in this particular post-perspective
space is not intuitive.

• The mapping to post-perspective space has a singularity, which causes prob-
lems with shadow casters on or opposite the singularity. The practical solu-
tion to this problem is to “move” the viewpoint backwards for the shadow
map generation until all relevant objects are included in front of the singu-
larity. However, this reduces the shadow-map quality.

• Due to a number of special cases, the implementation is quite involved.

• The increase in shadow map resolution near the viewer comes at the expense
of a drastic reduction of resolution for distant objects.

In this paper, we introduce light space perspective shadow maps (LiSPSM), a
new shadow mapping technique based on a variable perspective mapping specified
in light space (see Figure 3.1 for an example). The advantage of the technique is
that the chosen perspective mapping has no relevant singularities, allows treating
all lights as directional lights and does not change the direction of the light sources.
Therefore, most of the problems of perspective shadow maps are avoided. One
of the most important contributions of this paper is a thorough error analysis of
all shadow mapping techniques based on perspective reparameterizations. This
analysis is then exploited to derive optimal parameters for our LiSPSM technique.

An important insight is that perspective shadow maps trade near resolution
against large shadow errors in distant objects. In contrast, our method can be
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tuned to distribute the error equally or in a user-specified way among different dis-
tance regions. Light space perspective shadow maps are robust, as fast as standard
shadow maps and simple to implement. Their major limitation is inherent to all
methods based on reparameterizing the shadow plane, i.e., they can only deal with
perspective aliasing. Dealing with more kinds of shadow aliasing usually requires
a potentially costly scene analysis per frame.

The remainder of the paper is organized as follows: after a discussion of pre-
vious work in Section 3.2, we describe the LiSPSM technique in Section 3.3. In
Section 3.4, we provide a thorough error analysis of uniform, perspective and light
space perspective shadow maps and show how to optimally calculate the free pa-
rameter of LiSPSMs (n), which controls the distribution of aliasing error. Results
are given in Section 3.5, and conclusions and ideas for future work in Section 3.6.

3.2 Previous work

The two most important categories of shadow algorithms are shadow vol-
umes [Crow77] and shadow mapping [Will78]. Shadow volumes work in object
space and are therefore potentially more accurate, but place a high burden on geo-
metric and pixel processing and require well tesselated objects. Therefore, interest
in shadow mapping techniques is large, since they work in image space and require
only one additional rendering pass per light.

Most of the publications dealing with shadow maps try to solve the associ-
ated aliasing artifacts. Percentage closer filtering [Reev87] alleviates reprojection
problems by filtering. A number of papers have tried to solve perspective alias-
ing due to the perspective view-frustum projection. The most prominent of these
is the perspective shadow map method by Stamminger and Drettakis [Stam02],
which tries to remove perspective aliasing by subjecting the shadow map to the
same perspective transform as the viewer. Despite its drawbacks, this paper has
inspired and opened the door to more general shadow map reparameterization ap-
proaches, of which we present one in this paper. Another way to reparameterize
the shadow map is to tilt or warp the shadow plane directly [Chon04, Low03]. Re-
cent approaches propose to combine shadow maps with shadow volumes or other
primitives [Sen03, Govi03]. These techniques can potentially be combined with
the light space perspective shadow maps presented in this paper.

Another approach to solve the aliasing problem are adaptive shadow
maps [Fern01], where shadow maps are stored in a hierarchical fashion in or-
der to provide more resolution where it is required due to different aliasing arti-
facts. However, the approach requires multiple readbacks and does not map well
to current graphics hardware. Second depth shadow mapping [Wang94] can be
used to reduce problems due to depth quantization and self occlusions. Brabec et
al. [Brab02] improve uniform shadow map quality by focussing the shadow map
to the visible scene.
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As with all things related to real-time rendering, an excellent overview of
shadow mapping and shadow algorithms in general can be found in Möller and
Haines’ Real-Time Rendering book [Möll02]. Finally, concurrent to our own
work, there have been alternative developments to reduce shadow map alias-
ing [Kozl04, Mart04, Chon04, Aila04a].

3.3 Light space perspective shadow maps

3.3.1 Motivation

The goal of this work is to provide a fast, high-quality and robust shadow-map al-
gorithm. Perspective shadow maps attempt to improve shadow quality by warping
the shadow map according to a perspective transform given by the view transform.
Our approach draws on this basic idea and improves upon it based on two main
observations:

• While perspective transforms are valid tools to warp the shadow map, there is
no reason that this perspective transform needs to be tied to the view frustum
as in perspective shadow maps. In fact, any arbitrary perspective transfor-
mation could be used.

• Since the main goal of the perspective transform is to change the distribution
of shadow map pixels, it is sufficient to use a warp that affects mainly the
shadow map plane and not the axis perpendicular to the shadow map.

These two observations motivate a perspective transformation specified with
respect to the coordinate axes of light space. In contrast to perspective shadow
maps, this transformation has the important property that it does not change the
direction of the light sources, and has no relevant singularities, because the view
plane is parallel to the light vector. Directional lights remain directional lights in
post-perspective space, while point lights are converted to directional lights as well.
This results in a much more intuitive transformation, at the same time avoiding
many of the problems found in perspective shadow maps.

Note however that our method only deals with the same aliasing errors as per-
spective shadow maps. In particular, projection errors due to surfaces parallel to
light rays are not handled. An analysis of shadow mapping errors can be found in
Section 3.4.

3.3.2 Overview

Light space perspective shadow maps are applied in the following steps:
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P

V

l

Figure 3.2: An example configuration of light space perspective shadow maps with
view frustum V and the frustum defining the perspective transform P. Left: Note
how the light rays l are parallel to the near and far plane of P. Right: After per-
spective transformation, the light direction is unchanged.

• Focus the shadow map on the convex body B that encloses all interesting
light rays (i.e., the view frustum and all objects that can cast shadows into
it).

• Enclose this body with an appropriate perspective frustum P that has a view
vector parallel to the shadow map.

• By choosing the free parameter in P, the distance n of the projection ref-
erence point p to the near plane of the frustum, control the strength of the
warping effect.

• Apply P both during shadow map generation rendering just as in standard
shadow mapping.

Figure 3.2 shows an example configuration of light direction l, view frustum V
and perspective frustum P, and the resulting warp.

3.3.3 Focussing the shadow map

The first step proceeds exactly as described by Stamminger and Drettakis [Stam02]
for perspective shadow maps by focussing onto the convex body that is relevant for
shadow calculation. This is done by calculating the convex hull of the view frustum
and the light position (which is at infinity for a directional light) and intersecting
this hull with the light frustum and the scene envelope (typically its bounding box).
The result of this calculation is a convex body B described by a number of points.
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Figure 3.3: Construction of the perspective frustum P in 3D.

3.3.4 The perspective frustum in light space

The parameters for the perspective transform P can best be found in light space. We
construct light space in the following way (see Figure 3.3): The y-axis is defined
by the light vector l (but pointing towards the light). In the case of point lights, the
spot direction vector is used as light vector (non-spot lights are usually not used for
shadow mapping). The z-axis is defined to be perpendicular to the light vector and
to lie in the plane containing the observer view vector v and the light vector. The
x-axis complements the other two axes in order to form an orthogonal coordinate
system. Note that in this definition of light space, the xz-plane is parallel to the
shadow-map plane, and the z-axis corresponds roughly to the depth coordinate of
the eye coordinate system. For illustration purposes, we will use a left-handed light
space coordinate system in this paper, i.e., the z-axis has the same orientation as the
view vector. In practice, the z-axis will usually be reversed to give a right-handed
coordinate system, as is common for example in OpenGL.

For point lights, light space is defined as above, but after the perspective trans-
form associated with the point light. There are no singularities in the combined
perspective mapping, because the body B is completely in “front” of the light posi-
tion and the view frustum (provided no objects straddle the near plane of the point
light frustum). Thus, point lights can be treated as directional lights from this point
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on.

The near and far planes for the perspective frustum P are defined as planes
parallel to the xy-coordinate plane, placed at the minimum and maximum light-
space z-coordinate among the points of the body B.

The x and y coordinates of the projection reference point p for P are chosen so
that the resulting frustum is roughly symmetrical, by taking the x-coordinate from
the transformed viewpoint and the y-coordinate as the middle of the minimum and
maximum y-coordinates of the body B.

3.3.5 Choosing the free parameter n

The remaining free parameter for P, the distance n of the projection reference point
p to the near plane, influences how strong the shadow map will be warped. If it
is chosen close to the near plane of P, perspective distortion will be strong, and
the effect will resemble the original perspective shadow maps. If it is chosen far
away from the far plane of P, the perspective effect will be very light, approaching
uniform shadow maps. In Section 3.4, we will show that in the case of a view
direction perpendicular to the light vector, the optimal choice for this parameter is
nopt = zn +√z f zn, where zn and z f are the near and far plane distances of the eye
view frustum. We will also show that in order to also give optimal results when
the viewer is tilted towards the light or away from it, n has to be increased, so that
it reaches infinity when the viewer looks exactly into the light or away from it.
LiSPSMs then give exactly the same results as a uniform shadow map (which is
optimal for this case).

Finally, the frustum planes are found by projecting all points of the body B onto
the near plane of P and recording the maximum extents along the x and y axes of
the near plane.

3.3.6 Applying the perspective frustum

Once the appropriate perspective frustum P has been found, its application is sim-
ple. The frustum combined with the usual projective mapping used for standard
shadow maps. The mapping is used in two places, namely in the shadow map
generation, and in the texture coordinate generation for shadow map rendering.

3.4 Analysis and optimal parameter estimation

In this section, we provide an analysis of shadow map aliasing errors, especially
perspective aliasing, which is the error treated by our method. Our analysis is dif-
ferent from previous work in that we concentrate on worst-case errors in the center
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Figure 3.4: Aliasing in shadow mapping.

of view. We will show the ideal (yet impractical) logarithmic shadow map param-
eterization, and compare uniform, perspective and light space perspective shadow
maps with regard to perspective aliasing. We will also show how the free parameter
for light space perspective shadow maps can be chosen to provide optimal shadow
resolution in the majority of cases.

In this section we will focus on directional light sources for two reasons: first,
aliasing artifacts are often much worse for uniform light sources due to the wide
range they have to cover (e.g., outdoor lighting), and second, point lights are
mapped to directional lights in our approach.

3.4.1 What is perspective aliasing

We will briefly reiterate the main causes for shadow map aliasing for directional
lights. Figure 3.4 shows a configuration for a small edge.

A pixel on the shadow map represents a shaft of light rays passing through it
and has the size ds× ds in the local parameterization of the shadow map. Note
that we assume a local parameterization of the shadow map which goes from 0 to
1 between near and far planes of the viewer—this already assumes that the shadow
map has been properly focussed to the view frustum, not wasting any resolution on
invisible parts of the scene. Introducing a local parameterization at this point also
has the advantage that we will be able to compare different parameterizations. In
world space, the shaft of rays has the length dz = (z f − zn)ds for uniform shadow
maps as an example.
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The shaft hits a small edge along a length of dz/cosβ. This represents a length
of dy = dz cosα

cosβ in eye space, projecting to d p = dy/z on screen. Note that we
assume that the small edge can be translated along the z-axis. The shadow map
aliasing error d p/ds is then

d p
ds

=
1
z

dz
ds

cosα
cosβ

. (3.1)

Shadow map undersampling occurs when d p is greater than the size of a pixel,
or, for a viewport on the near plane of height 1, when d p/ds is greater than
resshadowmap/resscreen. As already shown by Stamminger and Drettakis, this can
happen for two reasons: perspective aliasing when dz

zds is large, and projection
aliasing when cosα/cosβ is large.

Projection aliasing occurs usually for surfaces almost parallel to the light di-
rection. Reducing this kind of error would require higher sampling densities in
such areas, which can only be found through an expensive scene analysis for each
frame. In this paper, however, we concentrate on an approach which works without
feedback, just like uniform or in some cases perspective shadow maps.

Perspective aliasing, on the other hand, is caused by the perspective projection
of the viewer. If the perspective foreshortening effect occurs along one of the axes
of the shadow map, it can be influenced by the parameterization of the shadow
map. For uniform shadow maps, dz/ds is constant, therefore d p/ds is large when
1/z is large, which happens close to the near plane. In order to reduce perspective
aliasing, it is therefore useful to analyze different shadow map parameterizations.

Note that perspective aliasing is the only aliasing error that can be improved us-
ing a global transformation like a perspective transform. Another important point
to note is that the reparameterization is most effective when the view direction is
perpendicular to the light direction. Otherwise, the depth range that can be influ-
enced by the reparameterization decreases, down to the limit case where the view
direction is parallel to the light vector. In this case, there is no perspective alias-
ing, and no global reparameterization of the shadow map can improve shadow map
quality. This means that any such reparameterization should converge to uniform
shadow maps in this situation.

Other image quality errors in shadow maps include resampling aliasing, which
can be solved by percentage closer filtering [Reev87]; “swimming” artifacts, i.e.,
shadows that seem to frequently change their shape (this happens for all shadow
map methods when they are undersampled except for the original “unfocussed”
uniform shadow maps, which stay fixed in world space); and self-occlusion arti-
facts due to depth quantization errors.
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3.4.2 Logarithmic shadow mapping

As has been shown in the previous subsection, perspective aliasing is the only
shadow mapping problem that can be improved with a global approach, namely by
changing the shadow map parameterization. An optimal parameterization would
make d p/ds constant = 1 over the whole available depth range. For the ideal case
of view direction perpendicular to light direction, this is (constants notwithstand-
ing) equivalent to

ds =
dz
z

, i.e., s =
∫ s

0
ds =

∫ z

zn

dz
z

= ln
z
zn

.

This shows that the optimal parameterization for shadow mapping (at least for
directional lights) is logarithmic. Unfortunately, such a parameterization is not
practical for hardware implementation. The logarithm could be applied in a vertex
program on modern programmable hardware, however, pixel positions and all input
parameters for pixel programs are interpolated hyperbolically. This makes graphics
hardware amenable to perspective mappings, but not logarithmic ones. Still, it
would be interesting to implement logarithmic shadow maps either in software
or in a vertex program for finely tesselated scenes in order to see their quality
advantage.

3.4.3 Analysis of light space perspective shadow maps

We will expand the analysis from the previous subsections in order to compare light
space perspective shadow maps to uniform and perspective shadow maps. We first
discuss the case in which the view direction is perpendicular to the light direction.
Note that this is also the ideal case for any method that tries to reduce perspective
aliasing, since the whole depth range in the view frustum is available to influence
the shadow map parameterization.

Figure 3.5 shows the setup for light space perspective shadow maps. The view
frustum V (which is assumed to be identical to B here) is enclosed by the perspec-
tive frustum P as described in Section 3.3.4. The values zn, z f and z describe the
distance of the near plane, the far plane and an arbitrary point respectively to the
viewpoint, whereas n, f and z′ represent the distances of the same entities to the
projection reference point p. In order to analyze the aliasing error d p/ds, we need
to find the shadow map parameterization s = s(z) that is induced by the perspective
transform P. The effect of P on s is more easily described using the z′-coordinate
(when using, for example, the OpenGL glFrustum command to generate P):

s =
1
2

+
f +n

2( f −n)
+

f n
z′( f −n)

. (3.2)

After substituting z′ = z− zn +n, differentiation gives:
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Figure 3.5: The parameterization of light space perspective shadow maps (shows
the yz-plane in light space). The parameter n is free and can vary between zn

(perspective shadow mapping) and infinity (uniform shadow mapping).

ds
dz

=
f n

(z− zn +n)2( f −n)
.

Substituting f = n + z f − zn and plugging this into equation (3.1) (assuming
projection aliasing = 1) gives:

d p
ds

=
(z− zn +n)2

z
(z f − zn)

n(n+ z f − zn)
. (3.3)

Equation (3.3) can now be used to analyze all three shadow mapping methods.
Sending n to infinity corresponds to uniform shadow maps and gives (z f − zn)/z,
i.e., the error decreases hyperbolically with increasing distance, which is of course
to be expected. More interesting is the case for perspective shadow maps, where
n = zn. Surprisingly, the result is a linear dependence on z:

d p
ds

= z
z f − zn

znz f
.

This means that for perspective shadow maps, the perspective aliasing error is
very small at the near plane. However, with increasing distance, the error increases
rapidly. This can be seen in Figure 3.6, which plots the perspective errors of uni-
form and perspective shadow maps for zn = 1 and z f = 100. See Section 3.4.5 for
an explanation why this is consistent with the claim that PSMs are optimal for this
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Figure 3.6: Perspective aliasing errors plotted against z-coordinate for different
shadow mapping techniques.

situation, given a different error analysis. Note again that uniform shadow maps
are assumed to be focussed.

Light space shadow maps lie between these two extremes of uniform and
perspective shadow maps, depending on the parameter n. There are many ways
to choose this parameter, including user choice or sampling several positions on
screen. However, we opted for a choice which gives the optimal error distribu-
tion along the whole depth range with respect to the Lmax norm. First, analyzing
equation (3.3) shows that the function has only one positive local extremum, a min-
imum at location n− zn. Therefore, the maxima within the relevant z-range [zn,z f ]
are located at the boundaries of the range. Consequently, the minimal Lmax norm is
achieved when both maxima are equal. Substituting first zn and then z f into equa-
tion (3.3) and solving for n yields the desired parameter value for the ideal case of
view direction perpendicular to light direction:

nopt = zn +
√

z f zn.

The associated maximum error rises roughly like √z f , which is much better
than both uniform and perspective shadow maps, which have a maximum error of
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z f . In addition to the perspective errors for uniform and perspective shadow maps,
Figure 3.6 also shows the error for light space perspective shadow maps (LiSPSM)
with n = nopt . It can be seen that the error for LiSPSMs decreases quickly to
the local minimum at√znz f , then rises practically linearly until reaching again the
maximum error at the far plane. One could say that LiSPSMs inherit the hyperbolic
falloff of uniform shadow maps at the near plane, and the linear increase from
perspective shadow maps from the minimum on, but both with far smaller error
maxima.

Finally, this treatment has only dealt with perspective aliasing in the z-
direction. In the x-direction, the situation is slightly different. The problematic
behavior of perspective shadow maps for the z-direction arises from the fact that
the z coordinate is projected into the shadow map s coordinate, which is subject to
foreshortening. The x-coordinate, however, is projected into the shadow map t co-
ordinate which is orthogonal to s, and this coordinate is not subject to perspective
foreshortening. On the contrary, t undergoes the same perspective transformation
as x, and is therefore ideal in the perspective shadow map approach, i.e., d p/dt is
constant.

For light space perspective shadow maps, the situation is a bit different. The
perspective aliasing error d p/dt evaluates to

ds
dt

=
z− zn +n

z
= 1+

√znz f

z
,

where n has been replaced by nopt in the right term. So, the error starts with a
maximum about the same order of magnitude than d p/ds and then falls off hyper-
bolically. This means that error is distributed fairly between the x and z direction,
whereas in perspective shadow maps, the x direction is ideal and the z direction
can show dramatic errors. Note that the unequal treatment of errors in the z and x
direction is inherent to all approaches that reparameterize the shadow plane.

3.4.4 General case

So far, the discussion has only dealt with the ideal case of a view direction per-
pendicular to the light direction. In practice, the light will rarely come directly
from above, and the observer will also want to look up and down. As discussed in
Section 3.4.1, this decreases the available depth range, and in the limit case of the
light direction parallel to the view direction, no reparameterization of the shadow
map can improve its quality, so the parameterization should converge to uniform
shadow mapping.

In the general case, the eye space z-coordinate does not correspond directly to
the light space z-coordinate. This has to be taken into account in the derivation
of nopt via the tilt angle γ, i.e., the angle between the light direction and the view
vector. The main difference in the derivation of the perspective aliasing error d p/ds
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Figure 3.7: The z-range affected by the reparameterization is small when the view
direction gets near the light direction. For perspective shadow maps, V and P would
be identical, but the effect of the warp on the z-distribution would be the same.

is that in equation (3.2), z′ has to be assumed as z′ = (z− zn)/sinγ + n instead of
the formula given there. Leading this through, the optimal parameter value only
has to be adjusted slightly as n′opt = nopt/sinγ.

This choice causes the perspective warping effect to decrease with increasing
tilt angle. For γ = 0, n′opt goes to infinity, totally removing the perspective trans-
form. This means that LiSPSMs converge to uniform shadow maps as desired. For
γ = π/2, on the other hand, the original formula results.

There are certain additional intricacies involved in the general case. Due to
the tilt of the view frustum with respect to the light direction, the warping effect
of the shadow map reparameterization is also tilted with respect to the view frus-
tum, which can reduce the range of z values that are actually affected by the warp.
Figure 3.7 shows such a constellation. In such cases, it is advisable to replace in
the calculation of n′opt z f by zn + ∆z, where ∆z = ( f −n)sinγ. This will cause the
mapping to converge faster to the uniform shadow map.

3.4.5 Discussion

Uniform and perspective shadow maps (PSMs) are at the opposite ends of a spec-
trum of error distributions: while uniform shadow maps show most error close to
the viewer and then gain rapidly in quality, PSMs have the best quality near the
viewer and then lose quality. The good results reported for PSMs seem surpris-
ing seeing that in Figure 3.6, uniform shadow maps surpass PSMs quite quickly
in quality, even though this is supposed to be the ideal case for PSMs. The main
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reason for this is that our error analysis is more robust than the one used by Stam-
minger and Drettakis.

Our analysis of d p/ds (here discussed again for the case of view direction per-
pendicular to light direction) is based on a small edge at the center of the viewport
that is translated in z-direction. This occurs for example when the viewpoint or an
object is translated in z-direction, or for objects in a scene that have varying depths
(see Figure 3.8). To extend the analysis to a general edge, it can be shown that
the term 1/z (together with the trigonometric term) in equation (3.1) needs to be
replaced by k/z− y/z2, where k is the slope of the edge. For y = 0 and k = 1, our
analysis results. In contrast, the error analysis done by Stamminger and Drettakis
assumes small edges that are distributed within a single line (in 2D). This corre-
sponds to restricting y to lie on a line with the same slope as the edge: y = kz− y0
with y0 arbitrary. The term 1/z from our analysis then becomes y0/z2, which, if
used for the derivation of equation (3.3), indeed gives the claimed constant error
d p/ds along the chosen line for PSMs (Figure 3.8). However, the problem for
PSMs is that the value of this constant can be quite large—it essentially behaves
as shown in Figure 3.6 when translated in z-direction. This can also be seen in
typical light views for PSMs, where almost no area is reserved for far objects. In
order to somewhat mitigate this quick increase in error, the authors push the near
plane as far as possible into the scene. Unfortunately, this requires a readback from
graphics hardware, which we avoid for LiSPSMs.

In essence, LiSPSMs are more robust because they minimize the worst-case
perspective aliasing error, which occurs near the center of the viewport, by blending
smoothly between uniform and perspective shadow maps. This is in contrast to
PSMs, which equalize the error along any given plane, but this error can be quite
large depending on the distance of this plane. Our optimal parameter choice limits
the error of LiSPSMs to about the square root of the maximum error of the other
two approaches (which both have the same maximum error) in our error analysis.
Note that Lmax with respect to the z-coordinate might not be the best error criterion,
as nearby objects are far more important visually. On the other hand, the ratio
between errors in near and far regions can be easily modified, giving, for example,
even more weight to nearby objects at the expense of distant objects.

We also want to stress that the analysis in this section was based on directional
light sources. While point lights are mapped to directional lights automatically
by our approach, the perspective transform native to the point light may invalidate
some of these findings for the case of point lights. However, we do not consider
this a big limitation of our analysis. On the one hand, point lights in indoor envi-
ronments or other “near”, i.e., very “perspective” point lights are not as prone to
perspective aliasing anyway, and uniform shadow maps might be sufficient in these
cases. On the other hand, “far” point lights behave more like directional lights and
should therefore be covered well by our analysis. Furthermore, there is a growing
interest in using directional lights for large outdoor environments, for example in
games.
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Figure 3.8: Shows the lines along which the perspective error is analyzed. PSMs
have constant error on small edges along the sloped line, whereas LiSPSMs dis-
tribute error evenly for small edges along the line with y = 0. The warping effect
for PSMs is much stronger, which is in general not desirable.

3.5 Results

We have implemented the light space perspective shadow map algorithm, and for
comparison also uniform shadow mapping and perspective shadow mapping. The
implementation runs on GeForce3-class or higher hardware and uses only OpenGL
ARB extensions. Performance was not measured separately, as LiSPSMs run as
fast as standard shadow mapping (i.e., with at least 75 fps for all tested scenes
on an Intel Pentium4 2.4GHz and an NVIDIA GeForceFX 5900 graphics card).
All images presented in the following (Figure 3.9) were captured using a 512x512
pixel viewport and a shadow map resolution of 1024x1024 pixels, using varying
directional light directions. Bilinear filtering was enabled, but we didn’t implement
percentage-closer filtering. The view frustum field of view was set to 60◦, the near
plane to 1.0, and the far plane to 400, which corresponds approximately to the the
scene extent.

Uniform shadow maps were always focussed on the relevant scene parts (un-
focussed uniform shadow maps are practically unusable for larger scenes). For
perspective shadow maps, we did not implement a read-back of the frame buffer as
suggested by the authors, but pushed the near plane to the nearest intersection with
an object bounding box in the view.

The images demonstrate our findings that uniform shadow maps work well
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Figure 3.9: Uniform (left), light space perspective (middle) and perspective (right)
shadow maps. The second row shows images rendered from the the warped light
views, which also include the eye frusta (shaded transparently). The view positions
show shadows for near, medium and distant (zoomed in the inset) objects. Uniform
shadow maps capture the distant shadow best, perspective shadow maps the near
shadow, and LiSPSM work well for both. Models courtesy of www.3dcafe.com.
For more results see also the attached high-resolution images and videos. A sample
implementation with source code is available at the author’s webpage.

for distant objects, perspective shadow maps for close objects, whereas LiSPMs
distribute the perspective error equally among near and distant objects, providing
good results for both. Note that in some cases, projection aliasing can be seen,
which cannot be solved with any technique relying on reparameterization.

3.6 Conclusions and future work

We have presented light space perspective shadow maps, a practical shadow map-
ping technique that combines the advantages of perspective and uniform shadow
maps, provides overall high shadow quality and avoids the pitfalls of perspective
shadow maps. The algorithm is robust, simple to implement and as fast as standard
shadow maps.

We have also conducted a thorough error analysis of perspective aliasing er-
rors in different shadow mapping techniques and shown our algorithm to be in a
certain sense optimal among perspective shadow map reparameterizations, and not
far from the ideal, logarithmic, parameterization.
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In terms of future work, it would be interesting to investigate logarithmic and
hierarchical parameterizations. Another idea is using multiple shadow maps for
different depth regions. Figure 3.6 practically invites such a partition into two
depth ranges, for example at the crossover point between uniform and perspective
shadow map errors.
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Michael Wimmer and Jiří Bittner

4.1 Introduction

Hardware occlusion queries are one of the most eagerly awaited graphics hardware
features in a long time. This feature makes it possible for an application to ask
the 3D API (OpenGL or Direct3D) whether or not any pixels would be drawn if
a particular object was rendered. With this feature, applications can check to see
if the bounding boxes of complex objects are visible or not, skipping them if their
bounds are occluded. Hardware occlusion queries are appealing to today’s games
because they work in completely dynamic scenes.

However, now that this feature has been available for more than two years
(via the NV/ARB_occlusion_query OpenGL extension and by the IDi-
rect3DQuery9 interface in Direct3D), there is not yet widespread adoption of
this feature for solving visibility culling in rendering engines. This is due to two
main problems related to naive usage of the occlusion query feature: the overhead
caused by issuing the occlusion queries themselves (since each query adds an ad-
ditional draw call), and the latency caused by waiting for the query results.

In this chapter, we present a simple but powerful algorithm that solves these
problems [Bitt04]: it minimizes the number of issued queries and reduces the de-
lays due to the latency of query results.

To achieve this, the algorithm exploits the spatial and temporal coherence of
visibility by reusing the results of occlusion queries from the last frame in order to
initiate and schedule the queries in the next frame. This is done by storing the scene
in a hierarchical data structure (such as a k-d tree, an octree, and so on [Cohe03],
processing nodes of the hierarchy in a front-to-back order, and interleaving occlu-
sion queries with the rendering of certain previously visible nodes.

The algorithm is smart about the queries it actually needs to issue: most visible
interior nodes of the spatial hierarchy and many small invisible nodes are not tested
at all. Furthermore, previously visible nodes are rendered immediately without
waiting for their query result, which allows filling the time needed to wait for query
results with useful work.

4.2 For Which Scenes Are Occlusion Queries Effective?

Let’s recap briefly for which scenes and situations the algorithm presented in this
chapter is useful.
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Occlusion queries work best for large scenes where only a small portion of
the scene is visible in each frame—for example, a walkthrough in a city. More
generally, the algorithm presented here works if in each frame there are large oc-
cluded interior nodes in the hierarchy. These nodes should contain many objects,
so that skipping them if they are occluded saves geometry, overdraw, and draw calls
(which are a typical bottleneck in today’s rendering systems [Wloka 2003]). An
important advantage the algorithm has over most other techniques used nowadays
in games (such as portal culling) is that it allows completely dynamic environ-
ments.

Some games—for example, shader-heavy ones—use a separate initial render-
ing pass that writes only to the depth buffer. Subsequent passes test against this
depth buffer, and thus expensive shading is done only for visible pixels. If the
scenes are complex, our occlusion-culling algorithm can be used to accelerate es-
tablishing the initial depth buffer and at the same time to obtain a complete visibil-
ity classification of the hierarchy. For the subsequent passes, we skip over whole
objects or groups of objects that are completely invisible at virtually no cost.

Finally, if there is little or no occlusion in your scene—for example, a flyover
of a city—there is no benefit to occlusion culling. Indeed, occlusion queries poten-
tially introduce an overhead in these scenes and make rendering slower, no matter
how the occlusion queries are used. If an application uses several modes of navi-
gation, it will pay to switch off occlusion culling for modes in which there is no or
only very little occlusion.

4.3 What Is Occlusion Culling?

The term occlusion culling refers to a method that tries to reduce the rendering load
on the graphics system by eliminating (that is, culling) objects from the rendering
pipeline if they are hidden (that is, occluded) by other objects. There are several
methods for doing this.

One way to do occlusion culling is as a preprocess: for any viewpoint (or
regions of viewpoints), compute ahead of time what is and is not visible. This
technique relies on most of the scene to be static (so visibility relationships do
not change) and is thus not applicable for many interactive and dynamic applica-
tions [Cohe03].

Portal culling is a special case of occlusion culling; a scene is divided into
cells (typically rooms) connected via portals (typically door and window open-
ings). This structure is used to find which cells (and objects) are visible from
which other cells—either in a preprocess or on the fly [Cohe03]. Like general pre-
process occlusion culling, it relies on a largely static scene description, and the
room metaphor restricts it to mostly indoor environments.
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Online occlusion culling is more general in that it works for fully dynamic
scenes. Typical online occlusion-culling techniques work in image space to re-
duce computation overhead. Even then, however, CPUs are less efficient than, say,
GPUs for performing rasterization, and thus CPU-based online occlusion tech-
niques are typically expensive [Cohe03].

Fortunately, graphics hardware is very good at rasterization. Re-
cently, an OpenGL extension called NV_occlusion_query, or
now ARB_occlusion_query, and Direct3D’s occlusion query
(D3DQUERYTYPE_OCCLUSION) allow us to query the number of raster-
ized fragments for any sequence of rendering commands. Testing a single complex
object for occlusion works like this (see also [Seku04]:

1. Initiate an occlusion query.

2. Turn off writing to the frame and depth buffer, and disable any superfluous
state. Modern graphics hardware is thus able to rasterize at much higher
speed [NVID04].

3. Render a simple but conservative approximation of the complex object—
usually a bounding box: the GPU counts the number of fragments that would
actually have passed the depth test.

4. Terminate the occlusion query.

5. Ask for the result of the query (that is, the number of visible pixels of the
approximate geometry).

6. If the number of pixels drawn is greater than some threshold (typically zero),
render the complex object.

The approximation used in step 3 should be simple so as to speed up the ren-
dering process, but it must cover at least as much screen-space area as the original
object, so that the occlusion query does not erroneously classify an object as invis-
ible when it actually is visible. The approximation should thus be much faster to
render, and not modify the frame buffer in any way.

This method works well if the tested object is really complex, but step 5 in-
volves waiting until the result of the query actually becomes available. Since, for
example, Direct3D allows a graphics driver to buffer up to three frames of render-
ing commands, waiting for a query results in potentially large delays. In the rest
of this chapter, we refer to steps 1 through 4. as “issuing an occlusion query for an
object.”

If correctness of the rendered images is not important, a simple way to
avoid the delays is to check for the results of the queries only in the following
frame [Seku04]. This obviously leads to visible objects being omitted from ren-
dering, which we avoid in this chapter.
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4.4 Hierarchical Stop-and-Wait Method

As a first attempt to use occlusion queries, we show a naive occlusion-culling al-
gorithm and extend it to use a hierarchy. In the following section, we show our
coherent hierarchical culling algorithm, which makes use of coherence and other
tricks to be much more effective than the naive approach.

4.4.1 The Naive Algorithm, or Why Use Hierarchies at All?

To understand why we want to use a hierarchical algorithm, let’s take a look at the
naive occlusion query algorithm first:

1. Sort objects front to back

2. For each object

(a) Issue occlusion query for the object (steps 1-4 from previous section)

(b) Stop and wait for result of query

(c) If number of visible pixels greater than 0

i. Render the object

Although this algorithm calculates correct occlusion information for all of our
objects, it is most likely slower than just rendering all the objects directly. The
reason for this is that we have to issue a query and wait for its result for every
object in the scene!

Now imagine, for example, a walkthrough of a city scene: We typically see a
few hundred objects on screen (buildings, streetlights, cars, and more). But there
might be tens of thousands of objects in the scene, most of which are hidden by
nearby buildings. If each of these objects is not very complex, then issuing and
waiting for queries for all of them is more expensive than just rendering them.

4.4.2 Hierarchies to the Rescue!

We need a mechanism to group objects close to one another so we can treat them
as a single object for the occlusion query. That’s just what a spatial hierarchy
does. Examples of spatial hierarchies are k-d trees, BSP trees, and even standard
bounding-volume hierarchies. They all have in common that they partition the
scene recursively until the cells of the partition are “small” enough according to
some criterion. The result is a tree structure with interior nodes that group other
nodes, and leaf nodes that contain actual geometry.

The big advantage of using hierarchies for occlusion queries is that we can now
test interior nodes, which contain much more geometry than the individual objects.
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In our city example, hundreds or even thousands of objects might be grouped into
one individual node. If we issue an occlusion query for this node, we save the tests
of all of these objects—a potentially huge gain!

If geometry is not the main bottleneck, but rather the number of draw calls
issued [Wlok03], then making additional draw calls to issue the occlusion queries is
a performance loss. With hierarchies, though, interior nodes group a larger number
of draw calls, which are all saved if the node is found occluded using a single
query. So we see that in some cases, a hierarchy is what makes it possible to gain
anything at all by using occlusion queries.

4.4.3 Hierarchical Algorithm

The naive hierarchical occlusion-culling algorithm works like this; it is specified
for a node within the hierarchy and initially called for the root node:

1. Issue occlusion query for the node

2. Stop and wait for the result of the query

3. If the node is visible

(a) If it is an interior node

i. Sort the children in front-to-back order
ii. Call the algorithm recursively for all children

(b) If it is a leaf node

i. Render the objects contained in the node

This algorithm can potentially be much faster than the basic naive algorithm,
but it has two significant drawbacks.

4.4.4 Problem 1: Stalls

The first drawback it shares with the naive algorithm. Whenever we issue an occlu-
sion query for a node, we cannot continue our algorithm until we know the result of
the query. But the time until the query result becomes available may be prohibitive.
The query has to be sent to the GPU. There it will sit in a command queue until
all previous rendering commands have been issued (and modern GPUs can queue
up more than one frame’s worth of rendering commands!). Then the bounding box
associated with the query must be rasterized, and finally the result of the query has
to travel back over the bus to the driver.

During all this time, the CPU sits idle, and we have caused a CPU stall. But
that’s not all. While the CPU sits idle, it doesn’t feed the GPU any new rendering
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Figure 4.1: CPU stalls and GPU starvation caused by Occlusion Queries.

commands. Now when the result of the occlusion query arrives, and the CPU has
finally figured out what to draw and which commands to feed the GPU next, the
command buffer of the GPU has emptied and it has become idle for some time as
well. This we call GPU starvation. Obviously, we are not making good use of our
resources. Figure 4.1 sums up these problems.

4.4.5 Problem 2: Query Overhead

The second drawback of this algorithm runs contrary to the original intent of the
hierarchical method. We wanted to reduce the overhead for the occlusion queries
by grouping objects together. Unfortunately, this approach increases the number
of queries (especially if many objects are visible): in addition to the queries for the
original objects, we have to add queries for their groupings. So we have improved
the good case (many objects are occluded), but the bad case (many objects are
visible) is even slower than before.

The number of queries is not the only problem. The new queries are for interior
nodes of the hierarchy, many of which, especially the root node and its children,
will have bounding boxes covering almost the entire screen. In most likelihood,
they are also visible. In the worst case, we might end up filling the entire screen
tens of times just for rasterizing the bounding geometry of interior nodes.

4.5 Coherent Hierarchical Culling

As we have seen, the hierarchical stop-and-wait method does not make good use
of occlusion queries. Let us try to improve on this algorithm now.

4.5.1 Idea 1: Being Smart and Guessing

To solve problem 1, we have to find a way to avoid the latency of the occlusion
queries. Let’s assume that we could “guess” the outcome of a query. We could
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Figure 4.2: Processing Requirements for Various Nodes

then react to our guess instead of the actual result, meaning we don’t have to wait
for the result, eliminating CPU stalls and GPU starvations.

Now where does our guess come from? The answer lies, as it so often does in
computer graphics, in temporal coherence. This is just another way of expressing
the fact that in real-time graphics, things don’t move around too much from one
frame to the next. For our occlusion-culling algorithm, this means that if we know
what’s visible and what’s occluded in one frame, it is very likely that the same
classification will be correct for most objects in the following frame as well. So
our “guess” is simply the classification from the previous frame.

But wait—there are two ways in which our guess can go wrong: If we assume
the node to be visible and it’s actually occluded, we will process the node need-
lessly. This can cost some time, but the image will be correct. However, if we
guess that a node is occluded and in reality it isn’t, we won’t process it and some
objects will be missing from the image—something we need to avoid!

So if we want to have correct images, we need to verify our guess and rectify
our choice in case it was wrong. In the first case (the node was actually occluded),
we update the classification for the next frame. In the second case (the node was
actually visible), we just process (that is, traverse or render) the node normally.
The good news is that we can do all of this later, whenever the query result arrives.
Note also that the accuracy of our guess is not critical, because we are going to
verify it anyway. Figure 4.2 shows the different cases.

4.5.2 Idea 2: Pull Up, Pull Up

To address problem 2, we need a way to reduce overhead caused by the occlusion
queries for interior nodes.
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Figure 4.3: Occlusion Query Requirements for Various Nodes.

Luckily, this is easy to solve. Using idea 1, we are already processing pre-
viously visible nodes without waiting for their query results anyway. It turns out
that we don’t even need to issue a query for these nodes, because at the end of the
frame, this information can be easily deduced from the classification of its chil-
dren, effectively “pulling up” visibility information in the tree. Therefore, we save
a number of occlusion queries and a huge amount of fill rate.

On the other hand, occlusion queries for interior nodes that were occluded in
the previous frame are essential. They are required to verify our choice not to
process the node, and in case the choice was correct, we have saved rendering all
the draw calls, geometry, and pixels that are below that node (that is, inside the
bounding box of the node).

What this boils down to is that we issue occlusion queries only for previously
visible leaf nodes and for the largest possible occluded nodes in the hierarchy (in
other words, an occluded leaf node is not tested if its parent is occluded as well).
The number of queries issued is therefore linear in the number of visible objects.
Figure 4.3 illustrates this approach.

4.5.3 Algorithm

We apply these two ideas in an algorithm we call “coherent hierarchical culling.” In
addition to the hierarchical data structure for the front-to-back traversal we already
know, we need a “query queue” that remembers the queries we issued previously.
We can then come back later to this queue to check whether the result for a query
is already available.

The algorithm is easy to incorporate into any engine as it consists of a simple
main traversal loop. A queue data structure is part of the C++ standard template
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Figure 4.4: Visibility of Hierarchy Nodes in Two Consecutive Frames.

library (STL), and a hierarchical data structure is part of most rendering libraries
anyway, for example, for collision detection.

The algorithm visits the hierarchy in a front-to-back order and immediately
recurses through any previously visible interior node (idea 1). For all other nodes,
it issues an occlusion query and stores it in the query queue. If the node was a
previously visible leaf node, it also renders it immediately, without waiting for the
query result.

During the traversal of the hierarchy, we want to make sure that we incorporate
the query results as soon as possible, so that we can issue further queries if we
encounter a change in visibility.

Therefore, after each visited node, we check the query queue to see if a result
has already arrived. Any available query result is processed immediately. Queries
that verify our guess to be correct are simply discarded and do not generate addi-
tional work. Queries that do not verify our guess are handled as follows: Nodes
that were previously visible and became occluded are marked as such. Nodes that
were previously occluded and became visible are traversed recursively (interior
nodes) or rendered (leaf nodes). Both of these cases cause visibility information
to be pulled up through the tree. See Figure 4.4, which also depicts a so-called
“pull-down” situation, where a previously occluded node has become visible and
its children need to be traversed

4.5.4 Implementation Details

The algorithm is easy to follow using the pseudocode, which we show in Fig-
ures 4.5 and 4.6. Let’s discuss some of the details in the code.

To maintain the visibility classification for all nodes over consecutive frames,
we use a visible flag and a frameID, which increments every frame. Nodes
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visible in the previous frame are easily identified through lastVisited =
frameID - 1 and visible = true; all other nodes are assumed invisible.
This way, we don’t have to reset the visibility classification for each frame.

To establish the new visibility classification for the current frame, we set all
nodes we encounter during the traversal to invisible by default. Later, when a query
identifies a node as visible, we “pull up” visibility; that is, we set all its ancestors
to visible as well.

Interior nodes that were visible in the last frames (that is, not leafOrWas-
Invisible) are nodes for which we skip occlusion queries altogether.

Traversing a node means rendering the node for leaf nodes or pushing its chil-
dren onto the traversal stack so that they get rendered front to back.

We also assume that the Render() call renders an object only if it hasn’t
been rendered before (this can be checked using the frameID). This facilitates
the code for previously visible objects: when we finally get the result of their
visibility query, we can just process them again without introducing a special case
or rendering them twice (since they have already been rendered immediately after
their query was issued). Another advantage is that we can reference objects in
several nodes of the hierarchy, and they still get rendered only once if several nodes
of the hierarchy are visible.

Finally, we have to be careful with occlusion tests for nodes near the viewpoint.
If the front faces of a bounding box get clipped by the near plane, no fragments are
generated for the bounding box and the node would be classified as occluded by
the test even though the node is most likely visible. To avoid this, we should check
for each bounding box that passes the view-frustum test whether any of its vertices
is closer than the near plane. In such a case, the associated node should be set
visible without issuing an occlusion query. Note that for the occlusion queries, the
actual node bounding boxes can be used instead of the (usually less tight) nodes of
the spatial hierarchy.

4.5.5 Why Are There Fewer Stalls?

Let’s take a step back and see what we have achieved with our algorithm and why.

The coherent hierarchical culling algorithm does away with most of the ineffi-
cient waiting times found in the hierarchical stop-and-wait method. It does so by
interleaving the occlusion queries with normal rendering, and avoiding the need to
wait for a query to finish in most cases.

If the viewpoint does not move, then the only point where we actually might
have to wait for a query result is at the end of the frame, when all the visible
geometry is already rendered. Previously visible nodes are rendered right away
without waiting for the results.
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TraversalStack.Push(hierarchy.Root);
while ( not TraversalStack.Empty() or

not QueryQueue.Empty() )
{
//-- PART 1: process finished occlusion queries
while ( not QueryQueue.Empty() and

(ResultAvailable(QueryQueue.Front()) or
TraversalStack.Empty()) )

{
node = QueryQueue.Dequeue();
// wait if result not available
visiblePixels = GetOcclusionQueryResult(node);
if ( visiblePixels > VisibilityThreshold )
{
PullUpVisibility(node);
TraverseNode(node);

}
}

//-- PART 2: hierarchical traversal
if ( not TraversalStack.Empty() )
{
node = TraversalStack.Pop();
if ( InsideViewFrustum(node) )
{
// identify previously visible nodes
wasVisible = node.visible and

(node.lastVisited == frameID - 1);
// identify nodes that we cannot skip queries for
leafOrWasInvisible = not wasVisible or IsLeaf(node);
// reset node’s visibility classification
node.visible = false;
// update node’s visited flag
node.lastVisited = frameID;
// skip testing previously visible interior nodes
if ( leafOrWasInvisible )
{
IssueOcclusionQuery(node);
QueryQueue.Enqueue(node);

}
// always traverse a node if it was visible
if ( wasVisible )
TraverseNode(node);

}
}

}

Figure 4.5: Algorithm pseudocode, part 1.
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TraverseNode(node)
{
if ( IsLeaf(node) )
Render(node);

else
TraversalStack.PushChildren(node);

}

PullUpVisibility(node)
{
while (!node.visible)
{
node.visible = true;
node = node.parent;

}
}

Figure 4.6: Algorithm pseudocode, part 2.

If the viewpoint does move, the only dependency occurs if a previously in-
visible node becomes visible. We obviously need to wait for this to be known in
order to decide whether to traverse the children of the node. However, this does not
bother us too much: most likely, we have some other work to do during the traver-
sal. The query queue allows us to check regularly whether the result is available
while we are doing useful work in between.

Note that in this situation, we might also not detect some occlusion situations
and unnecessarily draw some objects. For example, if child A occludes child B
of a previously occluded interior node, but the query for B is issued before A is
rendered, then B is still classified as visible for the current frame. This happens
when there is not enough work to do between issuing the queries for A and B. (See
also Section 4.5.7, where we show how a priority queue can be used to increase the
chance that there is work to do between the queries for A and B.)

4.5.6 Why Are There Fewer Queries?

We have already seen that a hierarchical occlusion-culling algorithm can save a lot
of occlusion queries if large parts of the scene are occluded. However, this is paid
for by large costs for testing interior nodes.

The coherent hierarchical culling algorithm goes a step further by obviating
the need for testing most interior nodes. The number of queries that needs to be
issued is only proportional to the number of visible objects, not to the total number
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of objects in the scene. In essence, the algorithm always tests the largest possible
nodes for occluded regions.

Neither does the number of queries depend on the depth of the hierarchy, as in
the hierarchical stop-and-wait method. This is a huge win, because the rasterization
of large interior nodes can cost more than occlusion culling buys.

4.5.7 How to Traverse the Hierarchy

We haven’t talked a lot about traversing the hierarchy up to now. In principle, the
traversal depends on which hierarchy we use, and is usually implemented with a
traversal stack, where we push child nodes in front-to-back order when a node is
traversed. This basically boils down to a depth-first traversal of the hierarchy.

However, we can gain something by not adhering to a strict depth-first ap-
proach. When finding nodes that have become visible, inserting these nodes into
the traversal should be compatible with the already established front-to-back order
in the hierarchy.

The solution is not to use a traversal stack, but a priority queue based on the
distance to the observer. A priority queue makes the front-to-back traversal very
simple. Whenever the children of a node should be traversed, they are simply
inserted into the priority queue. The main loop of the algorithm now just checks
the priority queue instead of the stack for the next node to be processed.

This approach makes it simple to work with arbitrary hierarchies. The hier-
archy only needs to provide a method to extract its children from a node, and to
compute the bounding box for any node. This way, it is easy to use a sophisticated
hierarchy such as a k-d tree [Cohe03], or just the bounding volume hierarchy of
the scene graph for the traversal, and it is easy to handle dynamic scenes.

Note also that an occlusion-culling algorithm can be only as accurate as the
objects on which it operates. We cannot expect to get accurate results for individual
triangles if we only ever test nodes of a coarse hierarchy for occlusion. Therefore,
the choice of a hierarchy plays a critical role in occlusion culling.

4.6 Optimizations

We briefly cover a few optimizations that are beneficial in some (but not all) scenes.

4.6.1 Querying with Actual Geometry

First of all, a very simple optimization that is always useful concerns previously
visible leaf nodes [Seku04]. Because these will be rendered regardless of the out-
come of the query, it doesn’t make sense to use an approximation (that is, a bound-
ing box) for the occlusion query. Instead, when issuing the query as described in
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Section 4.3, we omit step 2 and replace step 3 by rendering the actual geometry of
the object. This saves rasterization costs and draw calls as well as state changes for
previously visible leaf nodes.

4.6.2 Z-Only Rendering Pass

For some scenes, using a z-only rendering pass can be advantageous for our al-
gorithm. Although this entails twice the transformation cost and (up to) twice the
draw calls for visible geometry, it provides a good separation between occlusion
culling and rendering passes as far as rendering states are concerned. For the occlu-
sion pass, the only state that needs to be changed between an occlusion query and
the rendering of an actual object is depth writing. For the full-color pass, visibility
information is already available, which means that the rendering engine can use
any existing mechanism for optimizing state change overhead (such as ordering
objects by rendering state).

4.6.3 Approximate Visibility

We might be willing to accept certain image errors in exchange for better perfor-
mance. This can be achieved by setting the VisibilityThreshold in the
algorithm to a value greater than zero. This means that nodes where no more than,
say, ten or twenty pixels are visible are still considered occluded. Don’t set this
too high, though; otherwise the algorithm culls potential occluders and obtains the
reverse effect.

This optimization works best for scenes with visible complex geometry, where
each additional culled object means a big savings.

4.6.4 Conservative Visibility Testing

Another optimization makes even more use of temporal coherence. When an object
is visible, the current algorithm assumes it will also be visible for the next frame.
We can even go a step further and assume that it will be visible for a number of
frames. If we do that, we save the occlusion queries for these frames (we assume
it’s visible anyway). For example, if we assume an object remains visible for three
frames, we can cut the number of required occlusion queries by almost a factor
of three! Note, however, that temporal coherence does not always hold, and we
almost certainly render more objects than necessary.

This optimization works best for deep hierarchies with simple leaf geometry,
where the number of occlusion queries is significant and represents significant
overhead that can be reduced using this optimization.
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4.7 Conclusion

Occlusion culling is an essential part of any rendering system that strives to display
complex scenes. Although hardware occlusion queries seem to be the long-sought-
after solution to occlusion culling, they need to be used carefully, because they can
introduce stalls into the rendering pipeline.

We have shown an algorithm that practically eliminates any waiting time for
occlusion query results on both the CPU and the GPU. This is achieved by ex-
ploiting temporal coherence, assuming that objects that have been visible in the
previous frame will remain visible in the current frame. The algorithm also re-
duces the number of costly occlusion queries by using a hierarchy to cull large
occluded regions using a single test. At the same time, occlusion tests for most
other interior nodes are avoided.

This algorithm should make hardware occlusion queries useful for any appli-
cation that features a good amount of occlusion, and where accurate images are
important. For example, Figure 4.7 shows the application of the algorithm to the
walkthrough of a city model, with the visibility classification of hierarchy nodes
on the right. The orange nodes were found visible; all the other depicted nodes are
invisible. Note the increasing size of the occluded nodes with increasing distance
from the visible set. For the shown viewpoint, the algorithm presented in this chap-
ter provided a speedup of about 4 compared to rendering with view-frustum culling
alone, and a speedup of 2.6 compared to the hierarchical stop-and-wait method.
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Figure 4.7: Visualizing the Benefits of Occlusion Queries for a City Walkthrough.
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Peter Wonka, Michael Wimmer, Kaichi Zhou, Stefan Maierhofer, Gerd Hesina,
and Alexander Reshetov

Figure 5.1: Visualization of sampling strategies (white pixels show a subset of the
actual samples, missed geometry is marked red). Left: An urban input scene and a
view cell (in yellow) for visibility sampling. Middle: Previous visibility sampling
algorithms repeatedly sample the same triangles in the foreground while missing
many smaller triangles and distant geometry. Right: Our solution is guided by
scene visibility and therefore quickly finds most visible triangles while requiring
drastically fewer samples than previous methods.

Abstract

This paper addresses the problem of computing the triangles visible from a region
in space. The proposed aggressive visibility solution is based on stochastic ray
shooting and can take any triangular model as input. We do not rely on connec-
tivity information, volumetric occluders, or the availability of large occluders, and
can therefore process any given input scene. The proposed algorithm is practically
memoryless, thereby alleviating the large memory consumption problems preva-
lent in several previous algorithms. The strategy of our algorithm is to use ray
mutations in ray space to cast rays that are likely to sample new triangles. Our
algorithm improves the sampling efficiency of previous work by over two orders
of magnitude.

5.1 Introduction

Visibility is a fundamental problem in computer graphics: visibility computations
are necessary for occlusion culling, shadow generation, inside-outside classifica-
tions, image-based rendering, motion planning, and navigation, to name just a few
examples. While visibility from a single viewpoint can be calculated quite eas-
ily, many applications require the potentially visible set (PVS) for a region in
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Figure 5.2: Sampling in object and ray space. Left: a scene with a set of objects.
A view cell is shown as a line segment parameterized with s. We are interested in
all rays that intersect the view cell and a second line segment parameterized with t.
Middle: Shows a subset of the possible rays. One ray is highlighted in blue. Right:
A depiction of the discrete ray space. Any ray in the middle figure corresponds to a
point in ray space. The blue point corresponds to the blue ray in the middle figure.

space, which is, unfortunately, much more complicated. A number of excellent
from-region visibility algorithms exist, but most of them are only applicable to a
limited range of scenes, require complex computations, and sometimes significant
amounts of memory. Therefore, sampling-based solutions have become very popu-
lar for practical applications due to their robustness, general applicability, and ease
of implementation. In this paper we will improve upon previous sampling-based
algorithms by significantly improving the sampling efficiency, i.e., the number of
samples required to detect a certain set of visible polygons.

To motivate our design choices, we will look at two key aspects of any visibility
algorithm: the behavior of the algorithm in ray space, and the data structure used
to store and acquire visibility information.

Figure 5.2 illustrates the concept of ray space in 2D. Given a view cell, shown
as edge parameterized with s, and a scene with objects shown in grey, we can
compute visibility by considering all rays from the view cell to a plane behind the
scene, parameterized with t. For a 2D scene, this is a 2D set of rays; for a 3D scene
this is a 4D set of rays. If this set of rays is sampled densely enough, we will have
a good visibility solution.

The inefficiency of a pure regular sampling approach as shown in Figure 5.2
is that the same surfaces are sampled over and over again (note that the definition
of regular depends on the parameterization of ray space!). Therefore, it would
be beneficial if we could only sample areas that have not been sampled before.
This is shown in Figure 5.3, where after an initial orthogonal sampling, only few
additional rays are needed to find all visible surfaces. In total, little more than a
1D subspace of the 2D ray space needs to be explored in this example. This is
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Figure 5.3: Left: The scene sampled orthogonally. Middle: Additional samples to
capture oblique surfaces. Right: The rays used to sample the scene are shown in
corresponding colors.

due to the spatial coherence of visibility. In this paper, we exploit this coherence:
starting from stochastically sampled points, we grow lower-dimensional subspaces
of ray space using the newly introduced strategies of adaptive border sampling and
reverse sampling, which are guided by the properties of scene visibility.

The second key aspect of a visibility algorithm is what data structure is used
to store visibility information. The most complete, but also complex, way is to
store 4D ray space. For large scenes, this entails prohibitive levels of memory
consumption. Conservative algorithms often store the shadow volume, whereas
sampling algorithms use the volume of 3D space that has not been sampled yet (the
so-called void volume, Figure 5.4); but these data structures still require several
times the memory taken by the scene description itself. Alternatively, the boundary
of the void volume (the void surface [Pito99]) can be used, which is easy to sample
from one point in space, but difficult to manipulate. In this paper, we do not store
visibility information beyond the PVS at all, relying on our new reverse sampling
approach to penetrate the void surface based on the current sample only.

The key contribution of this paper is an intelligent sampling algorithm that
drastically improves the performance of previous sampling approaches by com-
bining random sampling with deterministic exploration phases. The algorithm re-
quires little memory, is simple to implement, accepts any triangular test scene as
input, and can be used as a general purpose visibility tool.

81



Chapter 5 Guided Visibility Sampling

Point Sample Void Volume Void Surface

Figure 5.4: Representing visibility from a single point. Left: independent samples.
Middle: the void volume. Right: the void surface.

5.2 Overview

5.2.1 Problem Statement

We consider visibility problems that are posed as follows: As first input we take a
three-dimensional scene consisting of a set of triangles, T S. We do not rely on con-
nectivity information, volumetric objects, or large polygons as potential occluders
(such a set of triangles is often called triangle soup). As second input we consider
a subset of ray space Ω, usually defined by the rays emanating within a 3D poly-
hedron called view cell and intersecting the bounding box of the scene. A ray can
be defined by a starting point and a direction. Using T S and Ω, we can define a
visibility function v : Ω→ T S, so that each ray in Ω maps to the triangle in T S that
it intersects first.

The exact solution of the visibility problem is the range of this function, v(Ω)⊆
T S, also called exact visible set EVS. Our algorithm is aggressive ([Nire02]), i.e.,
it calculates a potentially visible set PV S⊆ EV S.

Our algorithm can be used to solve the visibility problem in different appli-
cations (see Section 5.5.6). A usage scenario to keep in mind for the following
exposition is a visibility preprocessing system for real-time rendering: the view
space (set of possible observer locations) is partitioned into view cells. In a pre-
processing step, our algorithm is used to calculate and store a PVS for each view
cell (note that only its boundary polygons are taken into account, since any ray
leaving the view cell can be represented by a ray on the boundary). At runtime, the
view cell corresponding to the current observer location is determined, and only
the objects in the associated PVS are sent to the graphics hardware, leading to
significant savings in rendering time.
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5.2.2 Algorithm Overview

The algorithms in this paper are based on ray shooting and assume the capability
to trace a ray x and compute its first intersection with a scene triangle t ∈ T S, i.e.,
to compute the triangle t = v(x) (fast ray tracers include OpenRT [Wald03] and the
recently presented MLRTA [Resh05]).

The idea of a sampling solution is to select a sequence of rays X = xi, trace the
ray and add the triangle v(xi) to the visibility set PV S.

In this paper, we will address the problem on how to sample efficiently, that is
how to improve the chances of finding new triangles. We will start with one of the
most popular sampling strategies, random sampling (Section 5.3.1). Then we will
show how to use visibility information from previous samples to construct intelli-
gent sampling strategies based on ray mutation to complement random sampling:

Adaptive Border Sampling is an algorithm to quickly find nearby triangles
by sampling along the borders of triangles previously found to be visible (Sec-
tion 5.3.2).

Reverse Sampling is an algorithm to sample into regions in space that are likely
to be near the boundaries of visible and invisible space, i.e., the void surface (Sec-
tion 5.3.3).

In Section 5.3.4, we will show how to combine the different sampling algo-
rithms in order to obtain guided visibility sampling, a complete hybrid random
and deterministic sampling algorithm. The algorithm is called guided because
both sampling strategies are guided by visibility information in the scene (see Sec-
tion 5.5.4 for a more detailed discussion).

5.3 Visibility Sampling

All rays in the scene form a 5D space. A ray x has a starting point xp (3D) and
a direction xdir (2D). A typical visibility query is to give a region R in 3D space
and ask what is visible along the rays leaving the region (view cell). While this
defines a 5D set of rays, we only need to consider a 4D set of rays in practice; the
rays starting at the boundary δR of the viewing region. Additionally, all triangles
intersecting R are classified as visible.

5.3.1 Random Sample Generator

The random (or pseudo-random) sampling algorithm selects a sequence of random
samples X = xi from the scene. The probability distribution for each new sample
p(xi) is independent of all previous samples x1, ...,xn−1. The question of sampling
uniformity for random sampling has been explored in the context of form-factor
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computation [Sber93]. We sample the position and ray direction uniformly using
the following formulae:

u = ξ1, v = ξ2, φ = 2πξ3, θ = arcsinξ4,

where the ξi are independent Halton sequences [Nied92], and (u,v) are the
normalized coordinates on a view cell face. While random sampling alone suffers
from similar inefficiencies as regular sampling (see Section 5.1), it will be used to
seed the more efficient strategies described next.

5.3.2 Adaptive Border Sampling

This sampling algorithm is a deterministic ray mutation strategy that covers most
of the ground work to make our system successful. This strategy leaves the ray
starting point xp on the view cell fixed while covering adjacent triangles in object
space, practically constructing a local visibility map [Bitt02] from the selected
view cell point.

The key idea of this sampling strategy is that it adapts the sampling rate to
the geometric detail of the surface (see Figure 5.5). Therefore, it is unlikely that
subpixel triangles are missed, which is a problem for methods that sample objects
regularly. The method performs especially well for the most frequent case of a
connected mesh, but does not assume or use any connectivity information. The
connected regions are discovered in the random sampling step (therefore, scenes
with many small disconnected meshes like trees remain a challenge for the ap-
proach).

The algorithm proceeds as follows. If a triangle t = (p1, p2, p3) is hit for the
first time by a sample ray x = (xp,xdir), we enlarge t by a small amount to obtain
an enlarged polygon t ′ , and adaptively sample along its edges (Figure 5.5).

For each edge, we use two rays xl and xr, and the corresponding samples hit(xl)
and hit(xr) in world space. If the rays xl and xr hit different triangles, we recur-
sively subdivide the edge, up to a given threshold. At this point, we also detect
depth discontinuities between the new samples and the original sample on the tri-
angle, which is already a part of reverse sampling as described in the next section.

The actual method used for border enlargement deserves attention. In order not
to miss any adjacent triangles, the border polygon t ′ should be as tight as possible.
On the other hand, if it is too tight, t will be hit again due to the numerical precision
of ray shooting. If the enlargement were done in object space, this would happen
for near edge-on or very distant triangles. We therefore enlarge t in ray space
by rotating rays to the vertices of t to their new positions on t ′ by a small angle.
This is more robust because it depends neither on the distance of the triangle nor
on its orientation, but only on the numerical precision of the ray representation.
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Figure 5.5: Adaptive border sampling: Top: If we hit a new surface, we sample
nearby points on the border polygon t ′. Bottom: Adaptive subdivision of an edge
of t ′.

In practice, this means that for each vertex, the new vertices are put on a plane
perpendicular to the ray.

The shape of t ′ is chosen so that the ray space distance to t is fairly constant.
This is not possible with only 3 vertices, since sliver triangles would lead to singu-
larities. We therefore chose t ′ to be a polygon of 9 vertices. For each vertex pi of t,
three vertices pi, j on t ′ are generated. Two vertices are generated each on a vector
di, j perpendicular to the ray and to one of the adjacent edges, respectively. The
third is the midpoint of the other two, pushed away from t along the angle bisector
di,i:

di,i+1 = N((pi− xp)× (pi+1− pi))
di,i−1 = N((pi− xp)× (pi− pi−1))

di,i = N(di,i−1 +di,i+1) if di,i−1 ·di,i+1 > 0, else:

N((pi− xp)×di,i−1 +di,i+1× (pi− xp))
pi, j = pi + ε · |pi− xp| ·di, j

where N(v) is the vector normalization operator. di,i is chosen to be numerically
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Figure 5.6: Reverse Sampling: Left: initial hit on triangle t. Middle: the new ray
to predicted(x) is blocked by a much closer triangle t ′. Right: Reverse sampling
mutates the starting point on the view cell so that the ray passes through pnew

(yellow) and reaches predicted(x).

robust. For backfacing triangles, the di, j need to be inverted.

Adaptive border sampling efficiently explores connected visible areas of the
input model from a single viewpoint along a 1D curve in ray space (see Sec-
tion 5.5.4). However, it cannot penetrate into gaps visible only from other portions
of ray space. This is handled by reverse sampling.

5.3.3 Reverse Sampling

This algorithm is a deterministic mutation strategy that allows penetrating into as
yet uncovered regions of space. Note that this cannot be done perfectly: finding
the actual void volume is equivalent to the original visibility problem. However,
the adaptive sampling process gives good candidate locations for further sampling
rays, namely at discontinuity locations. This strategy works by changing the start-
ing point of the ray instead of its direction.

A discontinuity is detected during the adaptive sampling of an edge by com-
paring the distance of the ray origin to the actual hitpoint |hit(x)− xp| with the
distance to a “predicted” hitpoint |predicted(x)− xp|. The predicted hitpoint is
just the intersection of the ray x with the plane of the original triangle t. If the new
hitpoint is considerably (∆) closer, i.e.,

|predicted(x)− xp|− |hit(x)− xp|> ∆,

the ray is obviously occluded by a closer triangle. Note that we do not check
the reverse case (jump from closer to farther triangle) as this will be detected when
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doing adaptive border sampling for the farther triangle. We calculate a mutated ray
from a different view cell position to the predicted hitpoint so that it passes by the
occluding triangle. For this, the plane p = (xp,hit(x),hit(xold)) is intersected with
the newly found triangle (xold is the previous ray from which x was generated).
On the intersecting line, we select a point pnew which lies just outside of the new
triangle. The mutated ray is now constructed with xnew,dir = predicted(x)− pnew as
direction vector, and xnew,p = intersect(viewcell, line(pnew, predicted(x)) as origin
(see Figure 5.6). If the new ray is not contained in the ray space Ω (i.e., it does not
intersect the view cell), however, it is discarded.

The new ray xnew is now treated as independent ray, and the triangle it intersects
will be added for adaptive border sampling like any other triangle, but this time
with the new view cell origin.

For the 2D example in Figure 5.3, reverse sampling corresponds to a horizontal
movement in ray space.

5.3.4 Combining the Different Sampling Algorithms

The sampling strategies presented so far can be combined into an extremely effi-
cient guided visibility sampling algorithm. Its two main components are a sam-
ple generator for exploring the ray space with independent random samples, and a
sampling queue for propagating the ray using adaptive border sampling and reverse
sampling. The algorithm is described by the following pseudocode:
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Scene triangles size vc
CANYON 2,242,504 10x5x3 km 140x72 m
CITY 5,646,041 320x312x9 m 15x2.2 m
PPLANT 12,748,510 200x61x81 m 2x1.3 m
CUBES 24,000 100x100x100 m 1.5x1.5 m

Table 5.1: Statistics for all scenes. vc denotes the average size of view cells used
in the model.

5.3.5 Termination criteria

Depending on the application requirements, there are several options regarding
when to stop casting rays for a view cell: a) a fixed criterion, allocating a number
of rays or an amount of time for the computation of each view cell, or b) an adaptive
criterion, terminating if the number of newly found triangles per a certain number
of samples falls below a threshold, or most preferably, c) a combination of both.
A typical example for such a criterion is: stop the iteration when not more than 50
new triangles are found for 1M rays, or when a total of 10M rays has been shot,
whichever comes first.

5.4 Results

5.4.1 Overview

To compare the efficiency of our algorithm to previous work, we use the follow-
ing algorithms: GVS, our guided visibility sampling algorithm with adaptive bor-
der sampling (ABS) and reverse sampling (RS); and RAND, random sampling (in
GVS, a value of epsilon of 5e-5 was used for enlarging triangles). We have ded-
icated separate subsections to the comparisons with NIR, the main other existing
visibility sampling method published by Nirenstein and Blake [Nire04] (mainly
because this algorithm has a slightly different goal than GVS); and EXACT, Bit-
tner’s [Bitt03] exact visibility algorithm.

The test scenes selected are (see Figure 5.7 and Table 5.1): PPLANT, the com-
plete UNC Power Plant model; CITY, a city model of the ancient city of Pom-
peii generated using the CityEngine [Müll06]; CANYON, a dataset of the Grand
Canyon; and CUBES, a simple scene of random cubes. The tests were conducted
on an Intel Pentium4 3.2GHz with 4GB of main memory. The graphics card for
NIR was an NVIDIA GeForce 7900GTX 512MB.

For GVS and RAND, we used Intel’s multi-level ray tracer (MLRTA [Resh05]),
which allowed sampling rates between about 800K/s and 1200K/s, with peaks up
to several million samples/s. The sampling rate depends on the scene type (not so
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Figure 5.7: Top left: CITY. Top right: CUBES. Bottom left: PPLANT. Bottom
right: CANYON. Inlays: view from a view cell.

much on the size—PPLANT had a higher sampling rate than CANYON, for ex-
ample), and on the coherence of the rays (with random samples and ABS samples
being faster depending again on the scene). The overhead of the sampling selec-
tion process varied between 5 and 15%, depending on the relative distribution of
random, ABS and RS rays.

5.4.2 Asymptotic behavior

We first analyze the theoretical properties of the algorithms in terms of their sam-
pling behavior, i.e., on a sample-by-sample basis, since this is the only comparison
that does not depend on the individual implementation. Since we do not have an
exact visibility algorithm that runs in reasonable time on larger scenes, we can
only study their asymptotic behavior on a small number of view cells. Figure 5.8
provides a detailed analysis of the CANYON scene, graphing the pixel error (calcu-
lated by counting the false pixels in a large number of random renderings [Nire04])
and the number of triangles found over the number of samples for GVS and RAND.

89



Chapter 5 Guided Visibility Sampling

0
20
40
60
80

100
120
140

0 50 100 150 200

th
o

u
sa

n
d

tr
ia

n
g

le
s

GVS

RAND

0

20

40

60

80

100

1 3 5 7 9 11 13 15

a
v

g
p

ix
e
l

e
rr

o
r

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15
million rays

th
o

u
sa

n
d

tr
ia

n
g

le
s

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15
million rays

th
o

u
sa

n
d

tr
ia

n
g

le
s

GVS/CANYON
5 view cells

RAND/CANYON
5 view cells

CANYON
GVS/CANYON
5 view cells

million raysmillion rays

Figure 5.8: Detailed asymptotic analysis for 5 view cells for the CANYON model
(see text for details). The pixel errors are measured on a 1000x1000 screen, equiv-
alent to 10−4%. The plots in the lower right image show the blue view cell from
the other images.

The top left image shows that GVS converges linearly as long as the deterministic
strategies (ABS and RS) can be used for most triangles. The black dot on each view
cell curve shows when our termination criteria terminates the PVS search (we used
50 or less new triangles found per 1M samples). It can be seen that this happens
in a fairly well converged state already. The graph also shows that the behavior is
very similar for all view cells. The length of the linear segment only depends on
the final PVS size.

The top right figure shows RAND in comparison. The convergence of RAND
looks mainly logarithmic and has a very quick falloff after an initial strong phase.
It is especially noteworthy that even at 15M samples, when GVS has already long
converged, RAND is still 50K triangles behind GVS for most view cells. The
bottom right figure analyzes this behavior on an even larger scale for the dark blue
view cell from the other graphs. This figure confirms the quick convergence of
GVS, and shows that even after 200M samples, RAND is still several thousand
triangles behind GVS. It can be concluded that it would take RAND several orders
of magnitude longer to find a PVS that GVS can find with about 7M to 8M samples.

Finally, the bottom left figure proves that the PVS size correlates strongly to
average pixel error, and that the termination criterion discussed above works well in
practice, bringing the average pixel error below 30 pixels on a 1000x1000 screen.
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Due to the better distribution of initial samples, RAND shows lower average pixel
error in the phase where GVS searches mainly deterministically. However, to reach
the same pixel errors as provided by GVS in a converged state, RAND has to
calculate a similar number of triangles in the PVS, leading to the same observation
as before, that similar pixel error requires orders of magnitude more samples than
with GVS.

5.4.3 Practical results

Next, we demonstrate that these findings generalize to a larger number of scenes,
and provide a practical analysis including running times. Table 5.2 summarizes
our findings.

Alg. Avg.Err. Max.Err. time PVS

CANYON

GVS 35 239 7.9s 6.7%
RAND 67 828 183s 6.3%
NIR512 2,191 8,215 6.8s 5.8%
NIR1024 519 2480 11.6s 6.3%

CITY

GVS 22 230 6.1s 1.1%
RAND 70 625 69s 0.4%
NIR512 1,292 8,655 5.4s 0.2%
NIR1024 631 8,965 8s 0.4%

PPLANT

GVS 23 211 30s 0.8%
RAND 69 825 129s 0.5%
NIR512 3,225 17,169 24s 0.4%
NIR1024 1,549 8,317 25.9s 0.6%

Table 5.2: Statistics for all scenes averaged over a number of view cells. We used
a threshold of 50 or less triangles found per 1M samples to cut off computation
for GVS. For RAND, we shot 150M rays for each test. Errors are number of
false pixels on a 1000x1000 screen, which corresponds to 10−4%. Results for
NIR are given at 512x512 and 1024x1024 resolution. The intrinsic parameters had
to be adjusted for each scene to obtain reasonable results (see the comments in
Section 5.4.4). The last column shows the average size of the calculated PVS as a
percentage of the whole model.

We used the same convergence criterion of 50 triangles per 1M samples for
GVS, and a constant 150M rays for RAND. It can be seen that this results in very
similar average and maximum errors for both algorithms. However, the running
times differ by more than an order of magnitude, which reflects the good conver-
gence behavior of GVS with respect to RAND shown above. The table also lists
results for NIR, which are discussed in the following subsection. In addition to
the error we also give the size of the PVS in terms of the whole model size (an
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EVS was not available in reasonable time). A higher value means a more accurate
solution.

5.4.4 Comparison to hardware sampling

Nirenstein and Blake [Nire04] recently published an interesting adaptive regular
sampling algorithm which uses graphics hardware to adaptively sample hemi-cubes
on the view cell. It is difficult to directly compare NIR and GVS. On the one hand,
they are both based on the same atomic operation—taking a visibility sample. This
is because sampling with graphics hardware and with a ray tracer is functionally
practically equivalent due to the available sub-pixel precision (usually 12 bit) in
current graphics hardware.

The time complexity, however, differs significantly between the two algo-
rithms. The time complexity of ray casting is linear in the number of rays and,
due to spatial data structures, logarithmic in the number of objects. In practice,
we have also observed a strong dependence on the type of the scene and the im-
plementation of the ray tracer, which makes general predictions on the scalability
with respect to scene size very hard.

For graphics hardware, the basic operation is an item-buffer render. Depending
on whether a particular view is mostly fill or geometry limited, the resolution of this
item buffer has more or less impact on the rendering time. Our implementation of
NIR rendered models from multiple vertex buffers stored directly in video memory,
which provided triangle throughput near the theoretical maximum on the card we
used (between 130 and 190M triangles/s, depending on how many vertices were
shared in the model—note that some vertices had to be duplicated to allow item
buffer rendering). Only on the CANYON model did we observe a fill rate limitation
(9 vs. 12 hemicubes/s for 512 vs. 1024 resolutions), whereas CITY and PPLANT
were geometry limited (7 and 2 hemicubes/s).

Efficient acceleration algorithms exist for both architectures, if a certain
amount of preprocessing is tolerated. Of particular importance for visibility pro-
cessing is that the complexity of scenes that can be handled by ray tracing is limited
only by the available storage space, as ray casters can work efficiently out of core
(e.g., Wald et al. [Wald04] have demonstrated that a 350 million polygon model
can be ray cast at 2-3 frames per second). Furthermore, it should be pointed out
that rasterization benefits from hardware acceleration, whereas ray tracing is still
run in software. Recent advances in hardware for ray tracing [Woop05] promise
a huge potential for improving the speed of sampling-based algorithms like GVS
even further, once this technology becomes more commonplace.

However, the main difference between the algorithms is the principal goal.
NIR aims to increase rendering speed by aggressively culling more objects than
are actually occluded, the rationale being that large gains in rendering speed can
be obtained if errors in the final image are tolerated. Indeed, NIR consistently
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underestimates the PVS, as shown in Table 5.2 (note that even for an error threshold
of 0, a significant rest-error is reported for NIR [Nire04]).

While this approach is valuable for applications like quick previewing etc.,
where a resolution can be fixed, and an average of, for example, 1000 false pixels
is tolerable, many applications require a more accurate PVS. This is where GVS
excels. The GVS algorithm aims to provide the most accurate PVS possible with
a minimum number of samples. Therefore, the performance metric for GVS is not
the total percentage of culled objects, but the degree to which the actual PVS can
be approximated. Our results show that GVS, using a limited number of samples,
consistently finds the largest PVS, resulting in average pixel errors below 0.005%.
This is important for any visualization application that relies on visibility prepro-
cessing (especially if antialiasing is used or the output resolution is not fixed in
advance), but also for a number of other applications where reliable (and practi-
cally exact) visibility is required, e.g., computational geometry, GI, and robotics.

It should be noted for the results in Table 5.2 that NIR results are derived
through a PVS subdivision threshold, which works differently from the method
used in GVS and RAND and can therefore not be compared directly. We found
that this threshold was very sensitive to the type of the scene and had to be tuned
so as not to lead to excessive subdivision or too early termination in each scene
separately (for example, in once case the error for the 1024 resolution was signif-
icantly worse than for 512, due to premature termination). The reason for NIR’s
inability to pick up the complete PVS lies both in the regular sampling strategy,
which forces a very fine subdivision on the view cell in order to pick up sub-pixel
triangles, and in the thresholding for the adaptive subdivision, which can prema-
turely terminate the subdivision.

5.4.5 Comparison to exact visibility

We compared our algorithm to EXACT on the CUBES scene, from a view cell
of about 1.5x1.5m. EXACT took 19s on a PIV 1.7GHz PC to find 3,743 visible
triangles. To find the same number of triangles, GVS required about 3s. For GVS,
a screenspace error of 0.001% was already reported after 2s. More interesting,
however, is the fact that both GVS and RAND found significantly more visible
triangles than EXACT if given enough samples. For example, 3,850 triangles were
found after only 15s by GVS. Note that EXACT was used on an “as is” basis—
better results could certainly be achieved by tuning numerical thresholds intrinsic
to the method. This shows clearly that the accuracy of visibility algorithms, even
exact ones, is ultimately limited by numerical issues.
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5.5 Related Work, Discussion and Applications

A large volume of research has been devoted to visibility problems due to their
importance in computer graphics, computer vision, robotics and other fields. This
section compares various aspects of the proposed visibility sampling algorithm to
a wider class of from-region visibility algorithms. For a general overview, we
can recommend excellent surveys of visibility problems and algorithms [Dura99,
Cohe03].

From-region visibility algorithms are usually classified as exact (potentially
visible set PVS = exact visible set EVS), conservative (PVS ⊇ EVS), aggressive
(PVS ⊆ EVS), or approximate (PVS ∼ EVS).

5.5.1 Exact Visibility

Exact solutions to compute visibility from a region in space have been
rare [Dugu02, Dura99], but recently, two algorithms have been published [Nire02,
Bitt03] and further improved upon [Haum05, Mora05] that are both exact and work
for general scenes. While exact algorithms have been the holy grail of the visibility
community for a long time, these two algorithms show that the complexity inherent
in the visibility problem may be an obstacle to make exact visibility widely appli-
cable. The high running times and high complexity of implementation are critical,
and numerical robustness issues can actually make the solution as approximate as
a sampling-based strategy (see [Bitt03]). We believe that sampling-based methods
and exact methods complement each other, as they have different strengths and
weaknesses.

5.5.2 Conservative Visibility

Several authors stress the importance of conservative visibility computations, i.e.,
never underestimating the visible set. Since this problem is almost as hard as the
exact visibility problem, practically all published conservative from-region algo-
rithms simplify the problem by imposing certain restrictions on the scene. Typical
restrictions are the limitation to 2.5D visibility [Wonk00, Bitt01, Kolt01], archi-
tectural scenes [Aire90, Tell91], the restriction to volumetric occluders [Scha00],
or the restriction to larger occluders close to the view cell [Leyv03, Dura00]—this
last restriction is implied by the nature of the data structures used to store visibil-
ity information. While it can be argued that larger occluders can be synthesized
from smaller ones [Andu00], this is not possible in general. The guarantee to in-
clude all visible geometry in the PVS may be important for some applications, but
ultimately, sampling-based methods can be much more successful:

1. As opposed to the published conservative algorithms, they do not make any
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assumptions about the scene, allowing them to handle a much larger variety
of scenes.

2. Due to their ease of implementation and robustness, non-conservative al-
gorithms are more practical for commercial products such as computer
games [Aila04b], and are already used in this context.

3. Numerical issues often make conservative algorithms non-conservative in
practice.

5.5.3 Aggressive Visibility

Since visibility is such a fundamental problem, general, robust and practical
tools are important to complement the specialized algorithms discussed before.
These tools are almost universally based on sampling. The two most popu-
lar solutions are to randomly select a large number of rays to sample visibil-
ity [Scha00, Aire90, Shad98], or to first sample the boundary of the view cell
with points and then sample visibility from each of these points [Levo96, Stue99].
In the context of view planning for laser range scanners, sampling algorithms
exist that store the void surface or the void volume to compute the next-best
view [Pito99]. A similar algorithm was also used for the generation of textured
depth meshes [Wils03]. Another option is to shoot rays from the scene triangles
towards the view cell [Gots99], which leads to oversampling of ray space for most
scenes.

Nirenstein and Blake [Nire04] were the first to realize the full potential of sam-
pling for visibility computation. They proposed a new approach which uses graph-
ics hardware for sampling. As discussed in Section 5.4.4, this algorithm aims to
reduce the rendering time by culling even visible triangles as long as this does not
result in significant rendering error. This is opposed to our algorithm, which always
tries to find the best possible approximation of the exact visible set.

5.5.4 Algorithm Analysis

Ray space analysis. In the introduction in Figure 5.3, we have argued that it is de-
sirable not to sample the ray space regularly. The right image in this figure shows
that only an approximately 1D subspace of rays needs to be considered in this sim-
ple 2D example. Our new algorithm samples ray space more intelligently: random
sampling places initial seed points in ray space to stochastically search for regions
in ray space that have not been explored yet. To continue the example for 2D as in
the figure, adaptive border sampling corresponds to a vertical expansion in 2D ray
space (since the viewpoint remains fixed) which only proceeds into yet unexplored
areas. A particular advantage of the adaptive border sampling method is that the
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sampling rate is adapted to the geometric complexity of the visible surfaces. Re-
verse sampling, on the other hand, is a movement in the horizontal direction (since
the hitpoint remains fixed) in cases where these movements promise to lead to not
yet explored regions.

For the full 3D case, it is instructive to study our algorithm in terms of the visi-
bility complex [Dura99]. The visibility complex describes a partition of the 4D ray
space into 4D regions of rays that hit the same object (note that ray space is strictly
4D because we are only interested in rays starting from the view cell). The 3D
boundaries of this partition are called tangency volume and consist of rays tangent
to scene objects. Samples placed along the object borders therefore correspond to
samples near the tangency volume of the object in dual space. Since we keep the
viewpoint (2 degrees of freedom) fixed during the deterministic ABS exploration
phase, we need to sample a 1D set only. Without ABS, we would ignore the tan-
gency volumes and have to sample the whole 2D subset of ray space defined by the
chosen viewpoint.

Reverse sampling, on the other hand, looks for lines tangent to two scene edges.
In ray space, these lines are near intersections of two tangency volumes. These in-
tersections are called bitangents and are only 2D. For reverse sampling, the view-
point is allowed to move along a plane (1D), so in total RS also samples a 1D set.
The combined ABS and RS strategies therefore correspond to explorations of the
4D ray space along those 1D curves that are most likely to reveal new objects. This
explains the high efficiency of the GVS algorithm.

Another useful interpretation of the ABS sampling strategy in 3D is based on
the visibility map [Bitt02]. The visibility map is a structure that contains all visible
line segments in a given view. These segments can be characterized mainly as flat
and corner (interior edges of a mesh), or shadow (depth discontinuities). The ABS
sampling strategy places samples at all edges of the visibility map (without explic-
itly constructing it). Samples on interior edges of a mesh serve to find connected
sets of a mesh (trivially adjacent regions in the visibility complex). Samples at
the shadow edges serve to discover depth discontinuities, where objects are partly
occluded by other objects. Shadow edges are where the RS sampling strategy is
used to refine the sampling (by finding the bitangents in the visibility complex).

Accuracy. The term conservative (or even exact) visibility is actually quite
misleading. Most algorithms, though conservative in theory, are not conservative
in practice due to numerical robustness problems. This is especially true for algo-
rithms relying on graphics hardware. Furthermore, complex algorithms are prone
to implementation problems. Due to the much improved sampling efficiency, the
magnitude of error introduced by our algorithm is comparable to that of other
error sources. Such errors are usually tolerated for conservative algorithms (see
Section 5.4). Other algorithms that are often used in conjunction with visibility
processing, like level-of-detail algorithms or shadow mapping, are an additional
source of errors.
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Scene complexity. One distinguishing feature of our sampling-based algorithm
is that it can handle arbitrary types of scenes with high overall and visual complex-
ity. It does not rely on occluder synthesis, and depends mostly on the size of the
visible set, not on the total scene complexity.

5.5.5 Limitations and Future Work

Although guided visibility sampling generally finds the major part of the PVS very
quickly, the fact that it is stochastic on the one hand and guided by the visibility
in the scene on the other hand makes the final accuracy dependent on the structure
of the scene. Therefore, we cannot give any hard guarantees for the pixel error of
the calculated PVS. Also, the ability to explore connected ray space subsets in the
far distance is limited by the numerical precision of the ray direction vector. For
ABS, this means that triangles that have a solid angle of less than double precision
accuracy when seen from the ray origin will most likely be missed.

The worst case of scene complexity is in scenes that consist of a large set of
small disconnected triangles, such as forest scenes or synthetic scenes of random
triangles. The visibility of such scenes is so complex that even sampling-based
solutions will either have high error or take a long time to compute. Still, it is
important to point out that sampling-based algorithms are the only ones that are
able to even process these scenes.

In this respect, an avenue of future work is to incorporate geometric LOD into
the sampling framework, similar to the vLOD system proposed by Chhugani et
al. [Chhu05]. Geometric LODs could potentially increase the speed of the ray
tracer, and make intersection computations more robust because small triangles in
the distance get replaced by larger ones. However, robust geometric LOD is not
available for all scenes, and integrating LODs into ray tracers is a current topic
of research. Furthermore, the error metric used to create the LODs impacts the
accuracy of the visibility algorithm and therefore the usable output resolutions.

5.5.6 Applications

One important strength of sampling-based methods is their ease of application. We
will discuss a number of application scenarios for our algorithm.

Visibility preprocessing for real-time rendering and games. This is the scenario
already described in the overview, and one of the most important applications for
GVS. For example, the scenes of current computer games are becoming increas-
ingly general, so that special purpose algorithms (cells and portals, and 2.5D solu-
tions) cannot be used anymore, while exact algorithms are difficult to implement
and error-prone. GVS can be used in all stages of game development: During level
design, the number of rays can be limited so that a coarse solution can be provided
almost instantaneously. For the final production, the PVS can be calculated with
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high accuracy. It is very important to create a PVS that is as close to the EVS as
possible and not dependent on a particular output resolution, since the resolution
the application will be run at is not known in advance. In addition, antialiasing
methods (supersampling and multisampling) use information from subpixel trian-
gles, so that the virtual resolution is even higher. Note that although scenes in
computer games are inherently dynamic, the major part of the scene is still static,
so huge gains in rendering speeds can be obtained. Furthermore, GVS works on
arbitrary polyhedral view cells, so that the view space can be chosen freely.

Online and networked visibility. As shown in the results, a reasonable approxi-
mation to the EVS with low pixel error can be found in a second or less. Therefore,
GVS can be used for online visibility culling by running it on a separate processor
or over the network, as described in the Instant Visibility system [Wonk01]. In
this case, transmitting the PVS on a per-object basis will improve results because
it suffices for one triangle of an object to be found by GVS in order to classify the
whole object as visible. Furthermore, a small modification to GVS makes the al-
gorithm better suitable to progressive evaluation: instead of interleaving ABS and
random samples from the beginning, create a certain number (e.g., 1M) of random
samples in a startup phase, and only then use those to seed the ABS rays. This will
give a better distribution of samples in the initial phase of the algorithm, since ABS
systematically “flood fills” the PVS around its seed point, and it takes some time
until all image regions have been reached.

Impostor generation. In many scenes, visibility culling is not sufficient to guar-
antee a high frame rate everywhere in the model. Therefore, image-based methods
can be used to replace complex scene parts by so-called impostors. However, since
impostors trade rendering speed against memory consumption, it is important to
find the exact visible parts of the scene to avoid wasting impostor memory on in-
visible geometry [Jesc05]. GVS is ideally suited for this purpose since it provides
accurate per-triangle visibility information, so that only those object parts that are
actually visible need to be stored in an impostor.

Visibility as decision basis. Many practical applications require accurate visi-
bility information as part of a decision making process. Examples include visibil-
ity analysis in urban planning (does the new skyscraper impact old town?), mili-
tary applications (line of sight culling, tactical battlefield management [McDe87]),
telecommunications (visibility of emitters), robotics and many more. GVS is ad-
vantageous for these problems because it is general purpose and does not have any
parameters to tweak, and does not depend on any special properties of the scene.

5.6 Conclusion

We have presented a visibility sampling algorithm to compute a full 3D visibility
solution from a region in space. The proposed algorithm improves the efficiency
of previous sampling strategies by over two orders of magnitude, thereby allowing
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visibility solutions with negligible error to be computed in reasonable time. The
proposed algorithm works on arbitrary so-called polygon soups and does not re-
quire any memory beyond that used by the ray caster. Due to the new sampling
strategies employed in the algorithm, its accuracy is competitive even with exact
and conservative approaches, while it is also extremely simple to implement.

We have provided evidence that Guided Visibility Sampling closes an impor-
tant gap in visibility research. It combines the speed and ease of implementation
of sampling-based and special-purpose conservative algorithms with most of the
accuracy of exact solutions. Thus, GVS can be used as a general purpose visibility
tool.

Acknowledgements

We thank Jiri Bittner for fruitful discussions. This research was also supported by
the EU in the scope of the GameTools project (IST-2-004363), and by the NGA,
grant no. HM1582-05-1-2004.

99





Chapter 6

Instant Points

Published as:

• Michael Wimmer and Claus Scheiblauer:
Instant Points
In Proceedings Symposium on Point-Based Graphics 2006, pages 129–136.
Eurographics, Eurographics Association, July 2006. ISBN 3-90567-332-0.

101





Instant Points
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Abstract

We present an algorithm to display enormous unprocessed point clouds at interac-
tive rates without requiring long postprocessing. The novelty here is that we do not
make any assumptions about sampling density or availability of normal vectors for
the points. This is very important because such information is available only after
lengthy postprocessing of scanned datasets, whereas users want to interact with the
dataset immediately. Instant Points is an out-of-core algorithm that makes use of
nested octrees and an enhanced version of sequential point trees.

6.1 Introduction

Point-based rendering has gained a lot of popularity due to the availability of 3D
range scanners. Recent long-range laser scanners capture data up to 1000m, giving
wildly varying sampling densities (Fig. 6.1). Practically all current point rendering
approaches rely on assumptions about sampling densities, or the availability of
normal vectors for each point. In fact, most papers present models that have been
gained by point sampling a geometric mesh.

Unfortunately, post-processing a scanned point cloud to obtain a mesh can take
several person months. This is because especially data acquired in the outdoors
is not amenable to automatic postprocessing methods. Such data is characterized
by holes in almost any surface, varying sampling densities, and a mixture of sur-
face and non-surface structures (such as leaves), which is a problem for meshing
approaches. There are several efficient methods to estimate the normal vectors
required for point rendering techniques directly from the point cloud [Dey05].
However, normal estimation assumes that the points represent sufficiently dense
samples of an underlying surface, which cannot be assumed for long range scans,
where the data is simply too sparse in many regions. Thus, lengthy manual post-
processing is inevitable.

On the other hand, there is a real need for users to explore and interact with
the scanned data instantly. This is a factor of both costs and opportunity: pay-
ing several months for a qualified engineer to postprocess a scanned model can be
prohibitive for most potential users (e.g., archaeologists, architects et.) of 3D scan-
ners. Furthermore, at the time the post-processed model is available, the original
research question might have already been solved in another way, rendering the
model unnecessary.
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Figure 6.1: Example screenshot of an unprocessed point cloud consisting of 262M
points.

This is where Instant Points come in: We present the first point-rendering
algorithm that does not require postprocessing of point clouds and which at the
same times renders enormous amounts of unprocessed points at interactive rates
with negligible preprocessing. With unprocessed point clouds we mean those
which have not been interpreted in any way (meshing, normal estimation etc.), i.e.,
each point is defined only by a 3D position and—if available from the scanning
process—an RGB-color. The point cloud is converted into an efficient out-of-core
structure which is based on a combination of nested octrees and memory optimized
sequential point trees, optimally exploiting current graphics hardware.

Unprocessed point clouds evidently cannot match postprocessed models in im-
age quality. The main contribution of this paper is to show how to trade this re-
duced image quality against significantly increased visualization speed and im-
proved memory requirements. There is a definite need for unprocessed point ren-
dering, starting from quick onsite visualizations during the scan campaign (which
can help in scan planning, scan verification etc.); visualization systems where the
general “feel” of a location is more important than the exactness of every minute
detail; experimental systems for archaeologists, architects and regional planners,
for which such unprocessed point rendering would make range scanning viable at
all; visualization systems where access to the original point cloud is needed; and
many others.
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6.2 Previous Work

Rendering point clouds has recently become a popular topic. However, the huge
majority of research has concentrated on rendering datasets that have been post-
processed, if not even sampled from an original geometric model. These render-
ing approaches build on the pioneering Surfel approach [Pfis00], which basically
defines a point as a small ellipsoidal disk with normal vector. The trend is to-
wards ever higher-quality rendering methods for Surfels, as presented by Botsch
et al. [Bots05], who also give a very good overview of previous high-quality point
splatting methods.

However, high-quality input models are not often available, and methods deal-
ing with unprocessed point clouds are rare. Xu and Chen were the first to realize the
extreme difficulty of displaying models acquired from long range outdoor scanners.
Instead of trying to postprocess the data, they propose to use non-photorealistic
rendering techniques in order to change the viewers’ expectations on the realism of
the viewed model [Xu04]. While their system produces stunning results in many
cases, it is limited to smaller datasets due to its computational complexity.

Sequential point trees (SPT) by Dachsacher et al. [Dach03] is one of the fasted
algorithm for rendering small to medium point clouds because it makes good use
of graphics hardware. They realize that maximum throughput can only be achieved
if large batches of primitives are stored in graphics hardware buffer objects. For
unprocessed point clouds, however, the representation incurs significant memory
and performance overhead as will be shown in Section 6.4.

The first system that was able to render large point sampled models that do
not fit in main memory was QSplat [Rusi00], which builds a hierarchy that allows
per-node level-of-detail (LOD) selection. However, the selection has to be done
on the CPU. A similar approach is taken by Duguet and Drettakis [Dugu04], who
also use an LOD representation of a model that is processed per node. They target
the special hardware of PDAs, which do not have dedicated graphics processors.
The layered point cloud (LPC) [Gobb04] system uses block LODs for point sam-
pled models and achieves rendering rates that are an order of magnitude higher
compared to QSplat by making efficient use of graphics hardware. The system as-
sumes a uniform sampling density of the input data. Our nested octrees are similar
in spirit to layered point clouds, but our algorithm works on arbitrary data which is
not necessarily sampled uniformly. XSplat [Paja05] is another system for out-of-
core rendering of huge point clouds. Similar to our Instant Points system, XSplat is
based on SPTs and uses a two-level hierarchy. The main difference is that XSplat
is aimed at rendering high-quality models, whereas Instant Points offers significant
optimizations for unprocessed point clouds. Out-of-core methods have also been
extensively studied for triangle rendering, where two-level hierarchies are used as
well [Yoon05], but in addition, connectivity has to be taken into account.

Some systems approximate (parts of) the point cloud with textured [Wahl05]
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or normal-mapped [BOUB05] polygons without extracting the topology. While
these approaches can provide extremely fast frame rates for large point clouds, we
opted for a system where the original scanned points can be shown at the finest
level. A promising alternative to out-of-core rendering is to compress the point
cloud so that it fits into graphics card memory and can be decoded directly on the
GPU [Krüg05].

6.3 The Instant Points Rendering System

Unprocessed point clouds do not contain any connectivity or density information,
making it difficult to devise a suitable rendering representation. The main idea of
the Instant Points system is to circumvent this fact by interpreting point samples
through the effect they have on rendering in a frame buffer. This means that if
more than one point projects to one pixel, only one actual representative point is
needed to fill that pixel. More concretely, we deal with the problem of viewing
a dense point cloud, which can be solved through subsampling the point cloud.
Without additional information, we can not solve the interpolation problem that
arises when point clouds are viewed from too near a distance. In this case, we
give the user a choice of using a fixed world-space extent for point samples, or a
multiple of the sample distance which is derived from the depth of the hierarchy.

The Instant Points system consists of two main elements:

• Memory optimized sequential point trees (MOSPT), a version of SPTs im-
proved for unprocessed point clouds.

• Nested octrees, a structure that allows out-of-core rendering, and contains
MOSPTs as elements.

MOSPTs can be used alone for smaller point clouds to remove the 125% of
memory overhead caused on average by SPTs for unprocessed point clouds, and
increase the rendering speed by not having to render the 50% of additional interior
nodes in the hierarchy, and to simplify the rendering process. However, we will
mainly use them as parts of the nested octrees described later.

6.4 Memory Optimized Sequential Point Trees

6.4.1 Sequential Point Trees Revisited

Sequential Point Trees (SPTs) [Dach03] are a hierarchical point representation that
allows rendering through a sequential processing by the GPU, while the CPU is
available for other tasks. Each node of the hierarchy is associated with an error e.
The recursive traversal checks whether the projected error e/r < ε, where r is the
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view distance. This can be simplified by storing a minimum distance rmin = e/ε
with the node, so that the test becomes r > rmin. In addition, each node also stores
a distance rmax, in the simplest case the rmin of the node’s ancestor. This allows a
non-recursive test for each node by checking whether r ∈ [rmin,rmax]. This test can
easily be carried out by a vertex program on the GPU. Additionally, by sorting the
vertex list by rmax and calculating a lower bound min(r) via the bounding sphere of
the object, the GPU need only process a prefix of the vertex list with rmax < min(r).
Processing only this prefix is the main reason why SPTs are so efficient.

The error e in the original SPT algorithm assumes that the points are actually
splats (or surfels) with a splat size d and a normal vector n. Inner nodes have splat
sizes that encompass the child nodes. This allows levels of detail where larger
splats approximate flat surface areas, and smaller splats are used in curved areas.

6.4.2 Screen Splat Error Metric

A point in an unprocessed point cloud does not represent a surfel (i.e., a splat with
normal and radius), but a point sample that is rasterized by graphics hardware as
a screen-space splat. For a given point hierarchy, a node should be rendered when
further recursive traversal would not change the points that are rasterized. This is
the case if the projected size of the node is smaller than a pixel.

In order to achieve this semantics for SPTs, we define the error e of a node
as the diameter d of the node geometry. Therefore, rmin = d/ε, where ε needs to
be adjusted depending on the camera parameters and the desired splat size. This
allows unprocessed point clouds to be rendered using SPTs.

6.4.3 SPT overhead

Each hierarchical data structure has a certain overhead depending on the average
branching factor α. The memory overhead M, i.e., the number of interior nodes
relative to the leaf nodes, of a hierarchical structure can be calculated as [Dugu04]:

M ∼ 1
α−1

.

For an octree storing 2D surface data, α = 4, resulting in an overhead of 33%.
However, our experiments have shown that data coming from range scanners have
lower branching factors. For several different datasets, the observed branching
factor was α = 3, resulting in an overhead of M = 50%.

Note that this causes not only an increase in the memory required to store
an SPT in graphics hardware, but it also directly reduces rendering performance,
since the interior nodes are additional points that have to be processed by the vertex
processor. Especially for viewpoints near the model, where rmax > min(r) for all
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Figure 6.2: Linearized MOSPT hierarchy. Higher-level nodes form part of lower
levels of the hierarchy.

nodes and the whole vertex list has to be processed by the GPU, rendering time is
increased by M = 50% on average in comparison to rendering the original points
only.

Furthermore, nodes need to store rmin and rmax, taking 4 bytes (1 float) each.
Assuming that for scanned datasets, only a point position (12 bytes) and a color
(4 bytes) is stored normally, this would result in a structural overhead S = 50%.
In total, for unprocessed point clouds, the combined overhead M and S caused by
SPTs is 125% on average, depending on the branching factor of the specific model.

6.4.4 Memory optimization

In order to overcome the significant memory and rendering overhead caused by
SPTs for unprocessed point clouds, we make use of the following observation,
which follows directly from the definition of the screen splat error metric:

Any child node of an interior node that is selected for rendering will lead to the
same pixel on screen being rasterized as the interior node.

Therefore, instead of creating a new point to represent an interior node, we
use an existing child node as a representative point for the ancestor. This is sim-
ilar in spirit to vertex clustering algorithms [Lueb97, Ross93], where all vertices
in a hierarchy node are replaced by one representative vertex taken from the input
vertices. For an uncolored unprocessed point cloud, the choice of representative
is completely arbitrary. However, most interesting point clouds have color infor-
mation. In this case, we select the color that has the smallest color distance to the
average color of the child nodes.

The resulting hierarchy can be stored in an extremely efficient way as an SPT.
The nodes are still sorted by rmax, but instead of storing all nodes for each level in
the vertex list, we omit for each level those nodes that were chosen as representative
point in the previous (upper) level, and are therefore already stored in the vertex

108



Instant Points Chapter 6

Figure 6.3: Left: In an SPT, r = const selects different levels of the hierarchy.
Furthermore, nodes above and below r need to be culled. Right: In an MOSPT,
r = const selects exactly one level in a hierarchy from an MOSPT due to the screen
splat error metric. All nodes above r = min(r) are rendered.

list. This new, memory optimized SPT (MOSPT), does not require more memory
than the original point cloud. In fact, the hierarchical SPT structure is achieved by
cleverly reordering the original point cloud (see Figure 6.2).

6.4.5 Rendering MOSPTs

The screen splat error metric leads to several simplifications in the rendering of
MOSPTs in comparison to SPTs.

• The screen splat error metric d is constant for each level of the MOSPT
hierarchy, since all nodes at the same hierarchy level have the same diameter.
Therefore, a cut of the hierarchy with r = const gives exactly one level of
the hierarchy, instead of multiple levels as in SPTs (see Figure 6.3).

• SPTs evaluate the view distance r for each node in a vertex program to allow
culling nodes depending on their actual distance. For example, nodes further
away could be rendered with a coarser level of detail. While this would
also be possible for MOSPTs, there is no benefit in doing so, since culling a
vertex in the vertex shader does not reduce its rendering time. Therefore, we
just let the GPU process all nodes with rmax < min(r) (see Figure 6.3).

• There is no need to cull any node with rmin > r (i.e., interior nodes), since
these nodes also form part of the more refined nodes and should therefore be
rendered in any case.

• Again due to the constant d for each MOSPT level, it is not necessary to
save rmax for each node in the hierarchy on the CPU. Instead, it is sufficient
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Figure 6.4: A hierarchy (left) created for an SPT (middle) consists of original and
additionally created points. The SPT contains inner and leaf nodes mixed in one
level of the hierarchy. A hierarchy for an MOSPT (right) consists only of original
points.

to store in an index array for each hierarchy level the number of points con-
tained in this and all preceding hierarchy levels. The rmax values for each
hierarchy level can easily be recomputed on the fly.

These consequences of using MOSPTs lead to a very simple rendering algo-
rithm:

1. For each frame, the CPU calculates min(r) from the bounding sphere of the
model as in SPTs.

2. This is successively compared to rmaxi = di/ε for each hierarchy level i until
rmaxi > min(r).

3. The number p of points to render is looked up in the index array at position
i.

4. The GPU is instructed to render the first p points of the MOSPT.

Note that no vertex program is necessary to render an MOSPT. The difference
between a linearized hierarchy used for an SPT and a linearized hierarchy created
for an MOSPT can be seen in Figure 6.4. The SPT hierarchy contains additionally
created points for the inner nodes. For the SPT, all points from the root node down
to nodes that are just visible from the current viewpoint are sent to the GPU, and
the inner points of the three upper levels will be culled. For the MOSPT, the same
points are sent to the GPU, but all points will also be rendered, because they are
part of the model at any level of detail.

6.4.6 MOSPT Creation

The hierarchy chosen for MOSPTs is an octree with a user-specified maximum
recursion level. In a first step, an octree with empty interior nodes is created.
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Points are inserted into the octree consecutively and filtered down the hierarchy.
There are three possibilities when a point reaches a leaf cell:

1. The leaf cell is empty, and the point is stored there.

2. The leaf already contains a point. Then the leaf is split, and both points are
filtered further down the hierarchy.

3. The leaf is at the maximum recursion level and already contains a point.
There are two leaf node strategies:

(a) Simply add the point to the node.

(b) Reject the new point, as it does not add any new information to the
hierarchy.

In relation to nested octrees (see Section 6.5), the first leaf node strategy will be
used for inner nodes where the number of input points is below a certain threshold.
This guarantees that all input points are stored in the MOSPT. The second leaf node
strategy will be used for other inner nodes, with the result that each leaf node stores
exactly one point.

In a second step, representatives for the inner nodes are chosen in a bottom-
up fashion. For each inner node, we choose the node whose color has the least
distance to the average color of the child nodes. The chosen child node is then
deleted. Finally, the octree nodes are sorted by rmax and stored in a sequential
array.

6.5 Nested Octrees

6.5.1 Motivation and Definition

MOSPTs are an efficient data structure for rendering a large number of points.
However, they face three major problems:

1. There is no way to do view-frustum culling, e.g. for inside views of the
model.

2. Only one level of detail can be selected for the whole model.

3. It is not possible to render models that do not fit into the available memory.

It is well known that the first two problems can be solved by a straight-forward
combination of octrees and SPTs, where only the lower levels of the octree are
sequentialized, and the upper levels are used for culling and indexing. This would,
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Figure 6.5: 2D example: a nested quadtree of three levels. Inner quadtrees are in
color and limited to a depth of two.

however, require most of the SPTs to reside in graphics card memory, since it
is unlikely that a whole SPT projects to less than a pixel. A non-sequentialized,
classical octree on the other hand would be too slow because of the inadequate use
of the graphics API. Therefore, we need a data structure that organizes chunks of
points that are large enough so that they can be efficiently processed by the graphics
hardware and streamed into memory by a single disk access, and small enough that
they allow fine-grained view-frustum culling and memory control.

For this, we introduce nested octrees, a data structure that consists of an outer
octree and nested inner octrees. The outer octree allows view-frustum culling and
out-of-core rendering with incremental refinement, while MOSPTs are used as in-
ner octrees for highly efficient rendering and API use. The main novelty in our
nested octree approach is that the inner octrees overlap in the space they occupy.
This overlap provides an efficient LOD representation at each level of the outer oc-
tree, so that more detailed MOSPTs are only loaded from external memory when
required: refining a level in the outer octree only adds one additional level of points
to the representation. Each node of the outer octree holds exactly one inner octree,
which in turn holds the actual points. Each inner octree has a maximum user-
specified depth, as does the outer octree. The result is a layered structure similar to
layered point clouds [Gobb04], but which does not depend on a uniform sampling
density due to the different construction process.

Figure 6.5 shows the 2D case, a nested quadtree. The outer quadtree is repre-
sented by the boxes, and is used as traversal hierarchy to reach the inner quadtrees.
The overlapping inner quadtrees are limited to depth 2. Figure 6.6 shows the 1D
case, a nested binary tree, with inner binary trees with a depth of 3 (the complete
outer tree is not shown).
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Figure 6.6: 1D example: a nested bintree of 5 levels. The inner bintrees (in color)
are limited to depth 3.

6.5.2 Hierarchy Creation

As input data for creating nested octrees we take an arbitrary point cloud possibly
with color information. The depth for the inner octrees should be set neither too
small (to avoid a too large number of inner octrees) nor too large (as view-frustum
culling would becomes less efficient). We perform several sequential passes over
the input, keeping a good working set in main memory during each pass. In a
preliminary pass, each input file is scanned to build the bounding box of the whole
point cloud from the point coordinates. This bounding box is then inflated to a
cube and forms the root node R of the nested octree. R is set to be the current node,
and the original point cloud set to be the current input file.

Each subsequent pass performs the following steps until all points are filled
into the nested octree:

1. Create a new empty MOSPT for the current node.

2. Set its leaf node strategy to “reject” (see Section 6.4.6).

3. Create a “rejection file” for each child node of the outer octree, named using
a unique node identifier (e.g., “R057”).

4. Scan the current input file and insert all points into the new MOSPT. Write
each rejected point into one of the 8 rejection files, depending on its position.

5. If the number of points in any of the rejection files is smaller than a threshold:

(a) Set the leaf node strategy to “add,” so that points are added to instead
of rejected from the MOSPT.

(b) Add the points from the small rejection file to the current MOSPT.

6. Write the current MOSPT to disk.

7. Select a non-processed rejection file, set the current node from the filename
and start another pass with this rejection file as input.
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Finally, the outer octree, which stores for each node just the filename of the
associated MOSPT, is written to disk. As an optimization, the above algorithm can
be extended to fill several levels of the outer octree simultaneously. In this case,
instead of writing rejected points to a rejection file, they are inserted immediately
into an appropriate MOSPT. Although the hierarchy creation theoretically requires
O(logn) passes, this number is very low in practice. For the 262M points cathedral
model shown in Section 6.6, we used 18 total octree levels with a MOSPT depth
of 7, resulting in 11 outer octree levels. On our 1GB machine, we were able to
compute 3 levels simultaneously per pass, so that only 4 passes were needed.

6.5.3 Rendering

For rendering a nested octree, the user sets the maximum number of points (the
budget) to render for each frame to guarantee interactive navigation. For example,
a budget of 12M points will keep frame rates above 10fps on a graphics hardware
that processes 120M points/s. The goal of the rendering process is to render the
most important points as efficiently as possible. These points are those that are: not
view-frustum culled; not contained in a node that falls below a 1-pixel threshold;
and are currently loaded into graphics memory.

The outer octree is loaded completely into memory and traversed with the help
of a priority queue, with the size of the projected node bounding box as priority.
There is a second render queue that collects MOSPTs that are to be rendered.
The MOSPTs are not rendered immediately from the priority queue because the
processing of child nodes can change the rendered splat size of the parent node.

For each node that is popped from the priority queue, the following steps hap-
pen:

1. Check whether rendering the current MOSPT would exceed the budget. If
yes, stop traversal.

2. View-frustum cull the node. If not visible, skip node.

3. Check whether the projected bounding sphere of the lowest level node of the
associated MOSPT is below a threshold (typically 1 pixel). If this is the case,
skip the node.

4. Check whether the associated MOSPT is loaded into graphics card memory.

• If yes, put the node on the render queue, and put its 8 children on the
priority queue.

• If not, request the MOSPT from external memory and skip it for this
frame.
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The splat size used to render MOSPTs is determined in each outer octree node
by the lowest level descendant (more specifically, the smallest projected bounding
box of its associated MOSPT) that has all requested children loaded. This prevents
gaps caused by missing nodes. The splat size of leaf nodes will coarsely depend on
the sampling density using this construction. Alternatively, a fixed node size can
be used for rendering leaf nodes.

When the priority queue has been fully traversed, the rendering queue is tra-
versed and all contained nodes are rendered using graphics hardware.

View-frustum culling is done in clip-coordinates. The bounding boxes of the
cells can be calculated during rendering in a way that only requires additions, as
described in [Dugu04].

Handling out-of-core requests for MOSPTs that are not in graphics card mem-
ory happens in a separate thread so that rendering can continue undisturbed. Each
MOSPT is stored in a file that can be loaded directly into a graphics card buffer ob-
ject without preprocessing. Even though there may be a large number of MOSPT
files (about 30K files for a model with 262M points), the operating system provides
fast access to the individual files (e.g., the NTFS file system uses B-Trees for large
directories). The MOSPTs are managed in two LRU caches, one in graphics card
memory and one in main memory.

6.6 Results

We demonstrate Instant Points on a point cloud of a large cathedral, which consists
of more than 262M points from 77 scan positions. The accompanying video shows
an interactive session where we set a minimum target frame rate of 10 frames/s,
which is met or exceeded during the whole interaction. The video also shows that
some areas are successively refined as they are streamed in from hard disk. The
whole dataset for this animation requires 4GB on harddisk and was created auto-
matically in about 2 hours. Instant Points makes efficient use of current graphics
hardware: we achieve a throughput of 105-115M points/s during the whole anima-
tion, which is near the maximum point throughput (116M points/s) of our graphics
card. Only when the viewpoint is moving fast through the model, the throughput
drops to roughly 80M vertices/s. During rendering the cathedral, a maximum of
some 400 rendered cells is never exceeded when using 7 levels for the inner oc-
trees, which makes setup times for the graphics card buffer objects during rendering
negligible.

These results were generated on an Intel Pentium4 3.2GHz computer with
hyper-threading enabled, with two 10,000RPM harddisks (set up as a RAID 0),
and 1GB of RAM. The graphics card was an NVIDIA GeForce 6800GTO with a
maximum point primitive throughput of 116M points/s according to NVIDIA (we
were able to confirm this maximum throughput in our own tests). All scans used

115



Chapter 6 Instant Points

Figure 6.7: Single scans of and island location (M = 59%) and of an archaeological
excavation site (M = 53%).

in our tests were obtained using a Riegl LMS Z420i laser scanner with a range of
up to 800m at an accuracy of the depth measurement of 1cm.

To compare the efficiency of the original SPTs and MOSPTs on unprocessed
point data, we used one single scan of the cathedral. The original SPT contained
10,021,473 points, requiring 243MB memory, whereas MOSPTs required only
6,609,305 points (i.e., the original ones), at 107MB, which corresponds exactly
to our projected total overhead of 125%. Figure 6.7 shows two more scenes with
very similar overheads, confirming the empirical branching factor of α = 3 for
scanned datasets.

Hierarchy creation times ranged from 14 minutes for a model of 26M points
(8 scan positions, with 48,793 MOSPTs of depth 5), up to slightly over 2 hours
for the whole cathedral model (77 scan positions, with 33,887 MOSPTs of depth
7). These creation times are still reasonable even for usage in scanning campaigns,
where day-to-day planning has to take into account the already scanned positions,
and interaction with those positions is crucial.

The image quality of the rendering can naturally not compete with fully post-
processed point cloud models. The goal of this work is not to provide the highest
quality rendering—which is simply not possible with unprocessed point clouds—
but to provide quick interaction with huge point clouds by exploiting the fact that
unprocessed point clouds are simpler in structure. In the case of a high point den-
sity, the sub-sampling approach implemented by MOSPTs provides a reasonable
approximation that has the advantage that no assumptions about the point cloud
have to be made. Figure 6.8 compares a full SPT calculated using averaging with
an MOSPT using subsampling. Another property of the algorithm is that it does
not take the direction from where the sample was taken into account. It is therefore
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not possible to distinguish between front- and backfacing geometry, as is evident
in the cathedral video. This is a topic for future work.

The out-of-core process inherently also leads to popping artifacts when new
information is streamed into memory to refine the model. However, these popping
artifacts are only temporary, and when the viewer remains stationary for a short
time, he will be able to observe the full quality model when all the points are
loaded. Note that not all available points will be loaded by the system, but only
the amount of points that result in the desired target frame rate. Figure 6.9 shows
screenshots from the walkthrough where the image quality of the Instant Points
algorithm can be observed.

6.7 Conclusions and Future Work

We have presented Instant Points, a system to render huge unprocessed point clouds
with only little preprocessing. The algorithm does not rely on normal vector or
splat size estimation and can therefore render models with strongly varying den-
sities and many undersampled areas, which occur often in 3D range scanner data.
This is becoming a more and more important topic, since interaction with such
models is often necessary already before lengthy postprocessing to fix the model
or even manual mesh creation can take place. The system consists of an out-of-core
data structure called nested octrees, and utilizes an improved version of sequential
point trees called MOSPT, which take advantage of the restrictions of unprocessed
point clouds and require less memory and render faster than SPTs.

In terms of future work, we want to investigate more advanced methods to
adapt the splat size when zooming into the model, which is difficult in the ab-
sence of neighborhood information. In the realm of triangle rendering, the ran-
domized z-buffer approach [Wand01] handles huge polygonal scenes, and it would
be interesting to compare their randomization techniques to ours. Another ac-
celeration technique commonly used in triangle rendering is occlusion culling.
While the scene structure even of huge scanned datasets like the cathedral is not
necessarily amenable to culling, integrating the coherent hierarchical culling al-
gorithm proposed by Bittner et al. [Bitt04] into the render queue of nested oc-
trees seems straightforward. Finally, the memory savings obtained by MOSPTs
need to be contrasted with dedicated compression techniques, which can achieve
much higher compression rates at some additional cost (e.g., using quantization
and delta-coding [Krüg05]). We will investigate how these two complimentary
approaches can be combined while maintaining a high rendering speed.
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Figure 6.8: Quality comparison of SPT (left) and MOSPT (middle) rendering.
The colors for the SPT were obtained by averaging, those in MOSPT come from
selecting representative colors from child nodes. While the difference image (right)
does show some discrepancies, the order of magnitude of these differences is not
higher than that of the noise contained in the original data.
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Figure 6.9: Screenshots of the walkthrough in the cathedral model. The zoomed
parts of the middle image show that the point sizes are similar for the far away
and for the nearby regions, proving that the LOD selection works well. The middle
image was rendered with 9,890,458 points in 308 cells, and loading was completed.
In the right image, the magenta bounding boxes indicate that some children of these
cells were not rendered because the projected sizes of their bounding boxes were
too small.
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[Bitt02] Jiří Bittner. Efficient construction of visibility maps using approxi-
mate occlusion sweep. In SCCG ’02: Proceedings of the 18th spring
conference on Computer graphics, pages 167–175, 2002. ISBN 1-
58113-608-0. Cited on pages 84 and 96.

[Bitt03] J. Bittner. Hierarchical Techniques for Visibility Computations.
PhD Thesis, Czech Technical University in Prague, 2003. Cited on
pages 88 and 94.
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172. Eurographics, Eurographics Association, June 2004. Cited on
pages 43 and 44.

[Cohe03] Daniel Cohen-Or, Yiorgos L. Chrysanthou, Cláudio T. Silva, and
Frédo Durand. A Survey of Visibility for Walkthrough Applications.
IEEE Trans. on Visualization and Computer Graphics, 9(3):412–431,
2003. Cited on pages 61, 62, 63, 73, and 94.

[Crow77] Franklin C. Crow. Shadow Algorithms for Computer Graphics. Com-
puter Graphics (SIGGRAPH ’77 Proceedings), 11(2):242–248, July
1977. Cited on pages 6 and 43.

[Dach03] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger.
Sequential point trees. ACM Trans. on Graphics, 22(3):657–662,
2003. Cited on pages 105 and 106.

[Dey05] T. K. Dey, G. Li, and J. Sun. Normal Estimation for Point Clouds :
A Comparison Study for a Voronoi Based Method. In Eurographics
Symposium on Point-Based Graphics, pages 39–46, 2005. Cited on
page 103.

[Dugu02] Florent Duguet and George Drettakis. Robust Epsilon Visibility. In
Proc. ACM SIGGRAPH 2002, pages 567–575, July 2002. Cited on
page 94.

[Dugu04] Florent Duguet and George Drettakis. Flexible point-based rendering
on mobile devices. Computer Graphics and Applications, 24(4):57–
63, 2004. Cited on pages 105, 107, and 115.

[Dura99] Fredo Durand. 3D Visibility: Analytical Study and Applications. PhD
thesis, Universite Joseph Fourier, Grenoble, France, July 1999. Cited
on pages 94 and 96.

[Dura00] Frédo Durand, George Drettakis, Joëlle Thollot, and Claude Puech.
Conservative Visibility Preprocessing Using Extended Projections. In

121



Bibliography

Kurt Akeley, editor, SIGGRAPH 2000 Conference Proceedings, An-
nual Conference Series, pages 239–248. ACM SIGGRAPH, Addison
Wesley, July 2000. Cited on page 94.

[Fern01] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P.
Greenberg. Adaptive Shadow Maps. In SIGGRAPH 2001 Conference
Proceedings, pages 387–390, 2001. Cited on page 43.

[Funk93] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive Display Al-
gorithm for Interactive Frame Rates During Visualization of Com-
plex Virtual Environments. In James T. Kajiya, editor, SIGGRAPH
93 Conference Proceedings, Annual Conference Series, pages 247–
254. ACM SIGGRAPH, Addison Wesley, August 1993. ISBN 0-201-
51585-7. Cited on pages 3, 15, 17, 25, 30, and 32.

[Gart93] N. Gartner, C. Messer, and A. Rathi. Traffic Flow Theory. Technical
Report, Turner-Fairbank Highway Research Center, 1993. Cited on
page 21.

[Gieg06] Markus Giegl and Michael Wimmer. Queried Virtual Shadow Maps.
In Wolfgang Engel, editor, ShaderX 5 – Advanced Rendering Tech-
niques, volume 5 of ShaderX. Charles River Media, December 2006.
ISBN 1-58450-499-4. Cited on pages 6 and 39.

[Gieg07a] Markus Giegl and Michael Wimmer. Fitted Virtual Shadow Maps. In
Proceedings of Graphics Interface 2007, May 2007. Cited on pages 6
and 39.

[Gieg07b] Markus Giegl and Michael Wimmer. Queried Virtual Shadow Maps.
In Proceedings of ACM SIGGRAPH 2007 Symposium on Interac-
tive 3D Graphics and Games, pages 65–72, New York, NY, USA,
April 2007. ACM Press. ISBN 978-1-59593-628-8. Cited on pages 6
and 39.

[Gieg07c] Markus Giegl and Michael Wimmer. Unpopping: Solving the Image-
Space Blend Problem for Smooth Discrete LOD Transitions. Com-
puter Graphics Forum, 26(1):46–49, March 2007. ISSN 0167-7055.
Cited on page 4.

[Gobb04] Enrico Gobbetti and Fabio Marton. Layered Point Clouds. In Euro-
graphics Symposium on Point-Based Graphics, pages 113–120, 2004.
ISBN 3-905673-09-6. Cited on pages 105 and 112.

[Gots99] C. Gotsman, O. Sudarsky, and J. Fayman. Optimized Occlusion Cul-
ling Using Five-Dimensional Subdivision. Computers and Graphics,
5(23):645–654, 1999. Cited on page 95.

122



Bibliography

[Govi03] Naga K. Govindaraju, Brandon Lloyd, Sung-Eui Yoon, Avneesh Sud,
and Dinesh Manocha. Interactive shadow generation in complex envi-
ronments. ACM Transactions on Graphics, 22(3):501–510, July 2003.
Cited on page 43.

[Guen06] Gael Guennebaud, Loïc Barthe, and Mathias Paulin. Real-time soft
shadow mapping by backprojection. In Eurographics Symposium
on Rendering, Nicosia, Cyprus, 26/06/06-28/06/06, pages 227–234,
http://www.eg.org/, 2006. Eurographics. Cited on page 6.

[Habe07] Ralf Habel, Alexander Kusternig, and Michael Wimmer. Physically
Based Real-Time Translucency for Leaves. In Jan Kautz and Sumanta
Pattanaik, editors, Rendering Techniques 2007 (Proceedings Euro-
graphics Symposium on Rendering). Eurographics, June 2007. Cited
on page 5.

[Haum05] Denis Haumont, Otso Mäkinen, and Shaun Nirenstein. A Low
Dimensional Framework for Exact Polygon-to-Polygon Occlusion
Queries. In Proc. Eurographics Symposium on Rendering, pages 211–
222, June 2005. Cited on page 94.

[Helm94] James L. Helman. Architecture and Performance of Entertainment
Systems, Appendix A. ACM SIGGRAPH 94 Course Notes - Design-
ing Real-Time Graphics for Entertainment, 23:1.19–1.32, July 1994.
Cited on pages 3, 15, and 33.

[Hopp99] Hugues Hoppe. Optimization of mesh locality for transparent ver-
tex caching. In Alyn Rockwood, editor, SIGGRAPH 99 Conference
Proceedings, Annual Conference Series, pages 269–276. ACM SIG-
GRAPH, Addison Wesley, August 1999. Cited on pages 17 and 30.

[Jesc02a] Stefan Jeschke and Michael Wimmer. Textured Depth Meshes for
Real-Time Rendering of Arbitrary Scenes. In Paul Debevec and Si-
mon Gibson, editors, Rendering Techniques 2002 (Proceedings Eu-
rographics Workshop on Rendering), pages 181–190. Eurographics,
Eurographics Association, June 2002. ISBN 1-58133-534-3. Cited on
page 5.

[Jesc02b] Stefan Jeschke, Michael Wimmer, and Heidrun Schumann. Layered
Environment-Map Impostors for Arbitrary Scenes. In Wolfgang Stür-
zlinger and Michael McCool, editors, Proceedings of Graphics Inter-
face 2002, pages 1–8. AK Peters Ltd., May 2002. ISBN 1-56881-
183-7. Cited on page 5.

[Jesc05] Stefan Jeschke, Michael Wimmer, Heidrun Schumann, and Werner
Purgathofer. Automatic Impostor Placement for Guaranteed Frame

123



Bibliography

Rates and Low Memory Requirements. In Proceedings of ACM SIG-
GRAPH 2005 Symposium on Interactive 3D Graphics and Games,
pages 103–110. ACM, ACM Press, April 2005. ISBN 1-59593-013-
2. Cited on pages 5 and 98.

[Jesc07] Stefan Jeschke, Stephan Mantler, and Michael Wimmer. Interactive
Smooth and Curved Shell Mapping. In Jan Kautz and Sumanta Pat-
tanaik, editors, Rendering Techniques 2007 (Proceedings Eurograph-
ics Symposium on Rendering), page 10. Eurographics, 6 2007. Cited
on page 5.

[Kolt01] Vladlen Koltun, Yiorgos Chrysanthou, and Cohen-Or Cohen-Or.
Hardware-Accelerated from-Region Visibility Using a Dual Ray
Space. In Rendering Techniques 2001, pages 205–216, 2001. Cited
on page 94.

[Kozl04] Simon Kozlov. Perspective Shadow Maps - Care and Feeding. In GPU
Gems, pages 214–244. Addison-Wesley, 2004. Cited on page 44.

[Krüg05] Jens Krüger, Jens Schneider, and Rüdiger Westermann. DuoDecim
- A Structure for Point Scan Compression and Rendering. In Euro-
graphics Symposium on Point-Based Graphics, pages 99–107, 2005.
Cited on pages 106 and 117.

[Leht00] Lasse Lehtinen. 3Dfx Voodoo and Voodoo 2 FAQ, 2000. avail-
able at http://user.sgic.fi/~blob/Voodoo-FAQ/. Cited
on page 2.

[Levo96] Marc Levoy and Pat Hanrahan. Light Field Rendering. In Holly
Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual
Conference Series, pages 31–42. ACM SIGGRAPH, Addison Wes-
ley, August 1996. held in New Orleans, Louisiana, 04-09 August
1996. Cited on page 95.

[Leyv03] Tommer Leyvand, Olga Sorkine, and Daniel Cohen-Or. Ray space
factorization for from-region visibility. ACM Transactions on Graph-
ics, 22(3):595–604, 2003. ISSN 0730-0301. Cited on page 94.

[Low03] Kok-Lim Low and Adrian Ilie. Computing a View Frustum to Max-
imize an Object’s Image Area. Journal of Graphics Tools: JGT,
8(1):3–15, 2003. ISSN 1086-7651. Cited on page 43.

[Lueb97] David Luebke and Carl Erikson. View-Dependent Simplification
of Arbitrary Polygonal Environments. In Turner Whitted, editor,
SIGGRAPH 97 Conference Proceedings, Annual Conference Series,
pages 199–208. ACM SIGGRAPH, Addison Wesley, August 1997.
ISBN 0-89791-896-7. Cited on page 108.

124



Bibliography

[Mart04] T. Martin and T.-S. Tan. Anti-aliasing and Continuity with Trape-
zoidal Shadow Maps. In Proceedings of the Eurographics Symposium
on Rendering 2004, pages 153–160. Eurographics, Eurographics As-
sociation, June 2004. Cited on page 44.
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